Column analysis according to DIN EN 1992-1-1, 5.8.6

Materials

The following conditions shall apply for analysis according to 2nd order theory:

* Geometrical and physical nonlinear analysis of stress resultants, at the limit state of load capacity, as a result of deformation of the structure, including creep- and pre-deformation, Design dimensioning for 1.00-times nonlinear stress resultants
* In the case of percentage of reinforcement up to 2%, the effective stiffness for calculation of required reinforcement is assumed to be a maximum of: E.cm * I.gross * (.2 + 15 As/Ac)

 For calculation of the final deformations, however, the effective cross-section values as determined from the strain state are applied without the top-stated limitation. This counters the dangerous risk of an appreciable drop in stiffness for weakly reinforced cross-section in the state 1-->2.
* Material diagram for concrete under normal temperature for eff.EI is according to Fig.3.2 and Eq.3.14, for dimensioning, according to Fig.3.3 and Gl.3.17/3.18, reinforced concrete in all cases according to Fig.3.8
* The verification of constructional fire protection takes place in the simplified, tabular procedure for the fire resistance class R 90.

 Exposed on more than one side.
Material under normal temperature

<table>
<thead>
<tr>
<th>Material</th>
<th>Strength</th>
<th>E-Modulus elasticity</th>
<th>Dead load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concr C 35/45</td>
<td>f.ck = 35.0 N/mm²</td>
<td>E.c0m= 35805. N/mm²</td>
<td>25.0 kN/m³</td>
</tr>
<tr>
<td>Reinfsteel 500</td>
<td>f.yk = 500.0 N/mm²</td>
<td>E.s =200000. N/mm²</td>
<td>78.5 kN/m³</td>
</tr>
<tr>
<td>Prestress.steel</td>
<td>f.pk = 1770. N/mm²</td>
<td>E.p= 195000. N/mm²</td>
<td>78.5 kN/m³</td>
</tr>
</tbody>
</table>

Material diagrams for the following calculations

1. Deformation calculation eff.EI (permanent design situation)
2. Design dimensioning (permanent design situation)
5. Creep under sustained load; Conc. stress = 'Sigma'/(1+creep coef.)

Permissible strains used for loadbearing capacity, or for design dim.:
Concrete on compression -3.5 (o/oo), mean compression force -2.00 (o/oo)
Steel on tension side 10.0 (o/oo)

Partial safety factors used for loadbearing capacity:

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Concrete gamma.c:</th>
<th>Steel gamma.s:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.50</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>1.30</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>alfa.cc 1.15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Permissible partial safety factors used for loadbearing capacity:

<table>
<thead>
<tr>
<th>Concrete gamma.c</th>
<th>Steel gamma.s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.85</td>
<td>1.00</td>
</tr>
</tbody>
</table>

The characteristic curves should be defined at least 1 o/oo more than
the permissible strain. In case of prestressing, the pre-strain constraints
must be taken into account.
Each characteristic curve must contain the point sigma = 0. The following
designation 'quadr' means the middle of a section with quadratic plot.
Building member: Polygonaler Pfeiler - Höhe 41.05 m

Material 1 Concrete for analysis 1 with $k = 1.872$
Strain ($\varepsilon/\varepsilon_0$) -5.00 -2.25 quadr -1.40 quadr -0.60 quadr .0
Sigma (N/mm²) -28.7 -28.7 -27.6 -24.2 -19.3 -12.7 -6.8 0.0

Material 1 Concrete for analysis 2
Strain ($\varepsilon/\varepsilon_0$) -5.00 -2.00 quadr .0
Sigma (N/mm²) -19.8 -19.8 -14.9 0.0

Material 1 Concrete for analysis 5
Strain ($\varepsilon/\varepsilon_0$) -10.00 .0 10.00
Sigma (N/mm²) -358.0 0.0 358.1

Material 2 Reinforcement for analysis 1 2
Strain ($\varepsilon/\varepsilon_0$) -11.00 -2.17 .0 2.17 11.00
Sigma (N/mm²) -434.8 -434.8 0.0 434.8 434.8

Material 2 Reinforcement for analysis 5
Strain ($\varepsilon/\varepsilon_0$) -10.00 .0 10.00
Sigma (N/mm²) -2000.0 0.0 2000.0

System

Length of members

<table>
<thead>
<tr>
<th>Member</th>
<th>Length</th>
<th>begin. Member i</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>(m)</td>
<td>Height (m)</td>
</tr>
<tr>
<td>1</td>
<td>1.60</td>
<td>41.05</td>
</tr>
<tr>
<td>2</td>
<td>3.40</td>
<td>39.45</td>
</tr>
<tr>
<td>3 to 5</td>
<td>2.30</td>
<td>36.05</td>
</tr>
<tr>
<td>6 to 29</td>
<td>1.15</td>
<td>29.15</td>
</tr>
<tr>
<td>30</td>
<td>1.55</td>
<td>1.55</td>
</tr>
</tbody>
</table>

Support conditions (valid until new definition)

elast = force proportional and contradirectional to displacement, C positive

Condition in direction C.displacement (kN/m)

C.rotation (kNm/l)
Junc Height x y Phi.x Phi.y C.x C.y C.Phi.x
31 0.00 rigid rigid elast elast 0.0 0.0 220208000.0
220208000.0

Imperfection = Pre-deformation (valid until new definition)

Plot = affine to buckling figure
Reference junction = junction 1
Amount = 0.290 m
Direction = determined by program

Dead load pz (kN/m) = 25.0 * A.gross for all load cases

$\gamma.g = 1.35$ Ultimate limit state
Building member: Polygonaler Pfeiler - Höhe 41.05 m

LCC 1 = permanent load

kriechzeugende Dauerlasten

<table>
<thead>
<tr>
<th>Height</th>
<th>Px(kN)</th>
<th>Py(kN)</th>
<th>Pz(kN)</th>
<th>Mx(kNm)</th>
<th>My(kNm)</th>
<th>ex(m)</th>
<th>ey(m)</th>
<th>gam</th>
<th>psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.05</td>
<td>-12.7</td>
<td>22.3</td>
<td>15612.0</td>
<td>-12.3</td>
<td>4410.0</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Building member: Polygonaler Pfeiler - Höhe 41.05 m

LCC 2 = permanent or transient design situation
Creep due to sustained loading Lc 1 with creep value = 2.00
1.35(G+V)+ 1.50(P+Z+0.8T+S)+1.50x0.6xW

<table>
<thead>
<tr>
<th>Height</th>
<th>Px(kN)</th>
<th>Py(kN)</th>
<th>Pz(kN)</th>
<th>Mx(kNm)</th>
<th>My(kNm)</th>
<th>ex(m)</th>
<th>ey(m)</th>
<th>gam</th>
<th>psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.05</td>
<td>-12.7</td>
<td>22.3</td>
<td>15612.0</td>
<td>-12.3</td>
<td>4410.0</td>
<td></td>
<td></td>
<td>1.35</td>
<td>1.00</td>
</tr>
<tr>
<td>41.05</td>
<td>-23.0</td>
<td>206.0</td>
<td>5074.0</td>
<td>113.0</td>
<td>-1859.0</td>
<td></td>
<td></td>
<td>1.50</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Line loads (kN/m)

- Memb 3 bis 30: px = 0.00, py = 4.20, pz = 0.00, gam x psi = 0.90
- Memb 1 bis 2: px = 0.00, py = 5.00, pz = 0.00, gam x psi = 0.90

Cross-section 1
distance between reinforcement and edge 0.060 m given

Polygonal cross-section 1

<table>
<thead>
<tr>
<th>y (m)</th>
<th>z (m)</th>
<th>Point</th>
<th>Concrete= Material 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>-1.600</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>-1.600</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2.750</td>
<td>-1.100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.750</td>
<td>1.100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>1.600</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>1.600</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>1.050</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1.300</td>
<td>1.050</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1.300</td>
<td>-1.050</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>-1.050</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>-1.300</td>
<td>-1.050</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>-1.300</td>
<td>1.050</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>1.050</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>1.600</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>-2.00</td>
<td>1.600</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>-2.750</td>
<td>1.100</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Slap</td>
<td>Prio</td>
<td>Mat-no</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>Line</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Line</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Line</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Line</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Line</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Line</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Line</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Line</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Section 1 1Local
Building member: Polygonaler Pfeiler - Höhe 41.05 m

Cross-section 2
distance between reinforcement and edge 0.060 m given

Polygonal cross-section 1

<table>
<thead>
<tr>
<th>y (m)</th>
<th>z (m)</th>
<th>Point</th>
<th>Concrete= Material 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-1.410</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.680</td>
<td>-1.410</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2.430</td>
<td>-0.910</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.430</td>
<td>0.910</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.680</td>
<td>1.410</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>1.410</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>1.050</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1.300</td>
<td>1.050</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1.300</td>
<td>-1.050</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>-1.050</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>-1.300</td>
<td>-1.050</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>-1.300</td>
<td>1.050</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>1.050</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>1.410</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>-1.680</td>
<td>1.410</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>-2.430</td>
<td>0.910</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>-2.430</td>
<td>-0.910</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>-1.680</td>
<td>-1.410</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Point-, line- und ring-reinforcement

<table>
<thead>
<tr>
<th>No</th>
<th>Slap</th>
<th>Prio</th>
<th>Mat-no</th>
<th>Reinforcement As</th>
<th>Point 1</th>
<th>Point 2</th>
<th>refle-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y1(m)</td>
<td>z1(m)</td>
<td>max</td>
</tr>
<tr>
<td>1</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm2/m</td>
<td>-1.620</td>
<td>-1.350</td>
<td>-1.620</td>
</tr>
<tr>
<td>2</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm2/m</td>
<td>-1.620</td>
<td>1.350</td>
<td>1.620</td>
</tr>
<tr>
<td>3</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm2/m</td>
<td>-2.370</td>
<td>0.850</td>
<td>2.370</td>
</tr>
<tr>
<td>4</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm2/m</td>
<td>2.370</td>
<td>-0.850</td>
<td>2.370</td>
</tr>
<tr>
<td>5</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm2/m</td>
<td>-2.370</td>
<td>-0.850</td>
<td>-1.620</td>
</tr>
<tr>
<td>6</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm2/m</td>
<td>1.620</td>
<td>1.350</td>
<td>2.370</td>
</tr>
<tr>
<td>7</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm2/m</td>
<td>-2.370</td>
<td>0.850</td>
<td>-1.620</td>
</tr>
<tr>
<td>8</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm2/m</td>
<td>2.370</td>
<td>0.850</td>
<td>1.620</td>
</tr>
</tbody>
</table>

Section 2 1Local

Cross-section 3
distance between reinforcement and edge 0.060 m given

Polygonal cross-section 1

<table>
<thead>
<tr>
<th>y (m)</th>
<th>z (m)</th>
<th>Point</th>
<th>Concrete= Material 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-1.410</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.680</td>
<td>-1.410</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2.430</td>
<td>-0.910</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.430</td>
<td>0.910</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.680</td>
<td>1.410</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>1.410</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>-1.680</td>
<td>1.410</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>-2.430</td>
<td>0.910</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>-2.430</td>
<td>-0.910</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
Building member: Polygonaler Pfeiler - Höhe 41.05 m

-1.680 -1.410 10

Point-, line- und ring-reinforcement

| No | Slap | Prio | Mat-no | Reinforcement As | Point 1 | Point 2 | reflec-
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y1(m)</td>
<td>z1(m)</td>
<td>y2(m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>z2(m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>0.01000.0 cm²/m</td>
<td>-1.620</td>
<td>-1.350</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.620</td>
<td>-1.350</td>
</tr>
<tr>
<td>2</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>0.01000.0 cm²/m</td>
<td>-2.370</td>
<td>0.850</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.370</td>
<td>-0.850</td>
</tr>
<tr>
<td>3</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>0.01000.0 cm²/m</td>
<td>-2.370</td>
<td>0.850</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.370</td>
<td>-0.850</td>
</tr>
<tr>
<td>4</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>0.01000.0 cm²/m</td>
<td>-2.370</td>
<td>0.850</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.370</td>
<td>-0.850</td>
</tr>
<tr>
<td>5</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>0.01000.0 cm²/m</td>
<td>-1.620</td>
<td>-1.350</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.620</td>
<td>-1.350</td>
</tr>
<tr>
<td>6</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>0.01000.0 cm²/m</td>
<td>1.620</td>
<td>1.350</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.370</td>
<td>0.850</td>
</tr>
<tr>
<td>7</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>0.01000.0 cm²/m</td>
<td>1.620</td>
<td>1.350</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.370</td>
<td>0.850</td>
</tr>
<tr>
<td>8</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>0.01000.0 cm²/m</td>
<td>1.620</td>
<td>1.350</td>
</tr>
</tbody>
</table>

Section 3 1 Local

Cross-section 4
distance between reinforcement and edge 0.090 m given

Polygonal cross-section

<table>
<thead>
<tr>
<th>y (m)</th>
<th>z (m)</th>
<th>Point</th>
<th>Concrete= Material 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-1.000</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>-1.000</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1.750</td>
<td>-0.500</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.750</td>
<td>0.500</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>1.000</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>1.000</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>-1.000</td>
<td>1.000</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>-1.750</td>
<td>0.500</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>-1.750</td>
<td>-0.500</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>-1.000</td>
<td>-1.000</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Point-, line- und ring-reinforcement

| No | Slap | Prio | Mat-no | Reinforcement As | Point 1 | Point 2 | reflec-
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y1(m)</td>
<td>z1(m)</td>
<td>y2(m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>z2(m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>0.01000.0 cm²/m</td>
<td>-0.910</td>
<td>-0.910</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.910</td>
<td>-0.910</td>
</tr>
<tr>
<td>2</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>0.01000.0 cm²/m</td>
<td>-0.910</td>
<td>0.910</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.910</td>
<td>0.910</td>
</tr>
<tr>
<td>3</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>0.01000.0 cm²/m</td>
<td>-1.660</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.660</td>
<td>-0.500</td>
</tr>
<tr>
<td>4</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>0.01000.0 cm²/m</td>
<td>-1.660</td>
<td>-0.500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.660</td>
<td>0.500</td>
</tr>
<tr>
<td>5</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>0.01000.0 cm²/m</td>
<td>-1.660</td>
<td>-0.500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.660</td>
<td>0.500</td>
</tr>
<tr>
<td>6</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>0.01000.0 cm²/m</td>
<td>0.910</td>
<td>0.910</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.660</td>
<td>0.500</td>
</tr>
<tr>
<td>7</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>0.01000.0 cm²/m</td>
<td>0.910</td>
<td>0.910</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.660</td>
<td>0.500</td>
</tr>
<tr>
<td>8</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>0.01000.0 cm²/m</td>
<td>0.910</td>
<td>0.910</td>
</tr>
</tbody>
</table>

Section 4 3 Sections
Building member: Polygonaler Pfeiler – Höhe 41.05 m

Cross-section 5

distance between reinforcement and edge 0.090 m given

Polygonal cross-section

<table>
<thead>
<tr>
<th>y (m)</th>
<th>z (m)</th>
<th>Point</th>
<th>Concrete= Material 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-1.035</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.045</td>
<td>-1.035</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1.795</td>
<td>-0.535</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.795</td>
<td>0.535</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.045</td>
<td>1.035</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>1.035</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>-1.045</td>
<td>1.035</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>-1.795</td>
<td>0.535</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>-1.795</td>
<td>-0.535</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>-1.045</td>
<td>-1.035</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Point-, line- und ring-reinforcement

<table>
<thead>
<tr>
<th>No Slap</th>
<th>Priority No</th>
<th>Material No</th>
<th>Reinforcement As</th>
<th>Point 1</th>
<th>Point 2</th>
<th>reflected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y1(m)</td>
<td>z1(m)</td>
<td>y2(m)</td>
</tr>
<tr>
<td>1 Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-0.910</td>
<td>-0.910</td>
<td>0.910</td>
</tr>
<tr>
<td>2 Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-0.910</td>
<td>0.910</td>
<td>0.910</td>
</tr>
<tr>
<td>3 Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.660</td>
<td>0.530</td>
<td>-1.660</td>
</tr>
<tr>
<td>4 Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>1.660</td>
<td>-0.530</td>
<td>1.660</td>
</tr>
<tr>
<td>5 Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.660</td>
<td>-0.910</td>
<td>-0.910</td>
</tr>
<tr>
<td>6 Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>0.910</td>
<td>0.910</td>
<td>1.660</td>
</tr>
<tr>
<td>7 Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.660</td>
<td>0.530</td>
<td>-0.910</td>
</tr>
<tr>
<td>8 Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>1.660</td>
<td>0.530</td>
<td>0.910</td>
</tr>
</tbody>
</table>

Cross-section 6

distance between reinforcement and edge 0.090 m given

Polygonal cross-section

<table>
<thead>
<tr>
<th>y (m)</th>
<th>z (m)</th>
<th>Point</th>
<th>Concrete= Material 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-1.070</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.090</td>
<td>-1.070</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1.840</td>
<td>-0.570</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.840</td>
<td>0.570</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.090</td>
<td>1.070</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>1.070</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>-1.090</td>
<td>1.070</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>-1.840</td>
<td>0.570</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>-1.840</td>
<td>-0.570</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>-1.090</td>
<td>-1.070</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Building member: Polygonaler Pfeiler - Höhe 41.05 m

Point-, line- und ring-reinforcement

<table>
<thead>
<tr>
<th>No Slap</th>
<th>Prio</th>
<th>Mat-no</th>
<th>Reinforcement As</th>
<th>Point 1</th>
<th>Point 2</th>
<th>reflected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y1(m)</td>
<td>z1(m)</td>
<td>y2(m)</td>
</tr>
</tbody>
</table>

1. Line 1 2 0.01 000.0 cm²/m -1.000 -0.990 1.000 -0.990
2. Line 1 2 0.01 000.0 cm²/m -1.000 0.990 1.000 0.990
3. Line 1 2 0.01 000.0 cm²/m -1.750 0.570 -1.750 -0.570
4. Line 1 2 0.01 000.0 cm²/m 1.750 -0.570 1.750 0.570
5. Line 1 2 0.01 000.0 cm²/m -1.750 -0.570 -1.000 -0.990
6. Line 1 2 0.01 000.0 cm²/m 1.000 0.990 1.750 0.570
7. Line 1 2 0.01 000.0 cm²/m -1.750 0.570 -1.000 0.990
8. Line 1 2 0.01 000.0 cm²/m 1.750 0.570 1.000 0.990

Section 6 2 Sections

Cross-section 7
distance between reinforcement and edge 0.120 m given

Polygonal cross-section

<table>
<thead>
<tr>
<th>y (m)</th>
<th>z (m)</th>
<th>Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-1.105</td>
<td>1</td>
</tr>
<tr>
<td>1.135</td>
<td>-1.105</td>
<td>2</td>
</tr>
<tr>
<td>1.885</td>
<td>-0.605</td>
<td>3</td>
</tr>
<tr>
<td>1.885</td>
<td>0.605</td>
<td>4</td>
</tr>
<tr>
<td>1.135</td>
<td>1.105</td>
<td>5</td>
</tr>
<tr>
<td>0.000</td>
<td>1.105</td>
<td>6</td>
</tr>
<tr>
<td>-1.135</td>
<td>1.105</td>
<td>7</td>
</tr>
<tr>
<td>-1.885</td>
<td>0.605</td>
<td>8</td>
</tr>
<tr>
<td>-1.885</td>
<td>-0.605</td>
<td>9</td>
</tr>
<tr>
<td>-1.135</td>
<td>-1.105</td>
<td>10</td>
</tr>
</tbody>
</table>

Point-, line- und ring-reinforcement

<table>
<thead>
<tr>
<th>No Slap</th>
<th>Prio</th>
<th>Mat-no</th>
<th>Reinforcement As</th>
<th>Point 1</th>
<th>Point 2</th>
<th>reflected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y1(m)</td>
<td>z1(m)</td>
<td>y2(m)</td>
</tr>
</tbody>
</table>

1. Line 1 2 0.01 000.0 cm²/m -1.000 -0.990 1.000 -0.990
2. Line 1 2 0.01 000.0 cm²/m -1.000 0.990 1.000 0.990
3. Line 1 2 0.01 000.0 cm²/m -1.750 0.570 -1.750 -0.570
4. Line 1 2 0.01 000.0 cm²/m 1.750 -0.570 1.750 0.570
5. Line 1 2 0.01 000.0 cm²/m -1.750 -0.570 -1.000 -0.990
6. Line 1 2 0.01 000.0 cm²/m 1.000 0.990 1.750 0.570
7. Line 1 2 0.01 000.0 cm²/m -1.750 0.570 -1.000 0.990
8. Line 1 2 0.01 000.0 cm²/m 1.750 0.570 1.000 0.990

Section 7 4 Sections
Building member: Polygonaler Pfeiler - Höhe 41.05 m

Cross-section 8

Polygonal cross-section

<table>
<thead>
<tr>
<th>y (m)</th>
<th>z (m)</th>
<th>Point</th>
<th>Concrete Material 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-1.140</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.180</td>
<td>-1.140</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1.930</td>
<td>-0.640</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.930</td>
<td>0.640</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.180</td>
<td>1.140</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>1.140</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>-1.180</td>
<td>1.140</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>-1.930</td>
<td>0.640</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>-1.930</td>
<td>-0.640</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>-1.180</td>
<td>-1.140</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Point-, line- und ring-reinforcement

<table>
<thead>
<tr>
<th>No Slap</th>
<th>Prio Mat-no</th>
<th>Reinforcement As</th>
<th>Point 1</th>
<th>Point 2</th>
<th>reflected y1(m)</th>
<th>z1(m)</th>
<th>y2(m)</th>
<th>z2(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 1</td>
<td>2</td>
<td>0.01000.0 cm2/m</td>
<td>-1.060</td>
<td>-1.020</td>
<td>1.060</td>
<td>-1.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line 2</td>
<td>1</td>
<td>0.01000.0 cm2/m</td>
<td>-1.060</td>
<td>1.020</td>
<td>1.060</td>
<td>1.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line 3</td>
<td>2</td>
<td>0.01000.0 cm2/m</td>
<td>-1.810</td>
<td>0.520</td>
<td>1.810</td>
<td>0.520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line 4</td>
<td>2</td>
<td>0.01000.0 cm2/m</td>
<td>1.810</td>
<td>-0.520</td>
<td>1.810</td>
<td>0.520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line 5</td>
<td>2</td>
<td>0.01000.0 cm2/m</td>
<td>-1.810</td>
<td>-0.520</td>
<td>1.060</td>
<td>1.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line 6</td>
<td>2</td>
<td>0.01000.0 cm2/m</td>
<td>1.060</td>
<td>1.020</td>
<td>1.810</td>
<td>0.520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line 7</td>
<td>2</td>
<td>0.01000.0 cm2/m</td>
<td>-1.810</td>
<td>0.520</td>
<td>-1.060</td>
<td>1.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line 8</td>
<td>2</td>
<td>0.01000.0 cm2/m</td>
<td>1.810</td>
<td>0.520</td>
<td>1.060</td>
<td>1.020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cross-section 9

Polygonal cross-section

<table>
<thead>
<tr>
<th>y (m)</th>
<th>z (m)</th>
<th>Point</th>
<th>Concrete Material 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-1.175</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.225</td>
<td>-1.175</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1.975</td>
<td>-0.675</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.975</td>
<td>0.675</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.225</td>
<td>1.175</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>1.175</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>-1.225</td>
<td>1.175</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>-1.975</td>
<td>0.675</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>-1.975</td>
<td>-0.675</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>-1.225</td>
<td>-1.175</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Building member: Polygonaler Pfeiler - Höhe 41.05 m

Point-, line- und ring-reinforcement

<table>
<thead>
<tr>
<th>No</th>
<th>Slap</th>
<th>Prio</th>
<th>Mat-no</th>
<th>Reinforcement As</th>
<th>Point 1</th>
<th>Point 2</th>
<th>reflected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y1(m)</td>
<td>z1(m)</td>
<td>y2(m)</td>
</tr>
<tr>
<td>1</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.100</td>
<td>-1.020</td>
<td>1.100</td>
</tr>
<tr>
<td>2</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.100</td>
<td>1.020</td>
<td>1.100</td>
</tr>
<tr>
<td>3</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.850</td>
<td>0.550</td>
<td>-1.850</td>
</tr>
<tr>
<td>4</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>1.850</td>
<td>0.550</td>
<td>1.850</td>
</tr>
<tr>
<td>5</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.850</td>
<td>-0.550</td>
<td>-1.100</td>
</tr>
<tr>
<td>6</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>1.100</td>
<td>1.020</td>
<td>1.850</td>
</tr>
<tr>
<td>7</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.850</td>
<td>0.550</td>
<td>-1.100</td>
</tr>
<tr>
<td>8</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>1.850</td>
<td>0.550</td>
<td>1.100</td>
</tr>
</tbody>
</table>

Section 9 45Sections

Cross-section 10
distance between reinforcement and edge 0.120 m given

Polygonal cross-section

<table>
<thead>
<tr>
<th>y (m)</th>
<th>z (m)</th>
<th>Point</th>
<th>Concrete= Material 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-1.210</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.270</td>
<td>-1.210</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2.020</td>
<td>-0.710</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.020</td>
<td>0.710</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.270</td>
<td>1.210</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>1.210</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>-1.270</td>
<td>1.210</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>-2.020</td>
<td>0.710</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>-2.020</td>
<td>-0.710</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>-1.270</td>
<td>-1.210</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Point-, line- und ring-reinforcement

<table>
<thead>
<tr>
<th>No</th>
<th>Slap</th>
<th>Prio</th>
<th>Mat-no</th>
<th>Reinforcement As</th>
<th>Point 1</th>
<th>Point 2</th>
<th>reflected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y1(m)</td>
<td>z1(m)</td>
<td>y2(m)</td>
</tr>
<tr>
<td>1</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.150</td>
<td>-1.090</td>
<td>1.150</td>
</tr>
<tr>
<td>2</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.150</td>
<td>1.090</td>
<td>1.150</td>
</tr>
<tr>
<td>3</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.900</td>
<td>0.700</td>
<td>-1.900</td>
</tr>
<tr>
<td>4</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>1.900</td>
<td>-0.700</td>
<td>1.900</td>
</tr>
<tr>
<td>5</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.900</td>
<td>-0.700</td>
<td>-1.150</td>
</tr>
<tr>
<td>6</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>1.150</td>
<td>1.090</td>
<td>1.900</td>
</tr>
<tr>
<td>7</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.900</td>
<td>0.700</td>
<td>-1.150</td>
</tr>
<tr>
<td>8</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>1.900</td>
<td>0.700</td>
<td>1.150</td>
</tr>
</tbody>
</table>

Section 10 45Sections
Building member: Polygonaler Pfeiler - Höhe 41.05 m

Cross-section 11

distance between reinforcement and edge 0.120 m given

Polygonal cross-section 1

<table>
<thead>
<tr>
<th>y (m)</th>
<th>z (m)</th>
<th>Point</th>
<th>Concrete= Material 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-1.245</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.315</td>
<td>-1.245</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2.065</td>
<td>-0.745</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.065</td>
<td>0.745</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.315</td>
<td>1.245</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>1.245</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>-1.315</td>
<td>1.245</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>-2.065</td>
<td>0.745</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>-2.065</td>
<td>-0.745</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>-1.315</td>
<td>-1.245</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Point-, line- und ring-reinforcement

No Slap Prio Mat-no Reinforcement As Point 1 Point 2 refle-
min max y1(m) z1(m) y2(m) z2(m) cted
1 Line 1 2 0.01000.0 cm²/m -1.200 -1.120 1.200 -1.120 |
2 Line 1 2 0.01000.0 cm²/m -1.200 1.120 1.200 1.120 |
3 Line 1 2 0.01000.0 cm²/m -1.900 0.740 -1.900 -0.740 |
4 Line 1 2 0.01000.0 cm²/m 1.900 -0.740 1.900 0.740 |
5 Line 1 2 0.01000.0 cm²/m -1.900 -0.740 -1.150 -1.120 |
6 Line 1 2 0.01000.0 cm²/m 1.150 1.120 1.900 0.740 |
7 Line 1 2 0.01000.0 cm²/m -1.900 0.740 -1.150 1.120 |
8 Line 1 2 0.01000.0 cm²/m 1.900 0.740 1.150 1.120 |

Section 11 4Sections

Cross-section 12

distance between reinforcement and edge 0.120 m given

Polygonal cross-section 1

<table>
<thead>
<tr>
<th>y (m)</th>
<th>z (m)</th>
<th>Point</th>
<th>Concrete= Material 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-1.280</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.360</td>
<td>-1.280</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2.110</td>
<td>-0.780</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.110</td>
<td>0.780</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.360</td>
<td>1.280</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>1.280</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>-1.360</td>
<td>1.280</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>-2.110</td>
<td>0.780</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>-2.110</td>
<td>-0.780</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>-1.360</td>
<td>-1.280</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Building member: Polygonaler Pfeiler - Höhe 41.05 m

Point-, line- und ring-reinforcement

<table>
<thead>
<tr>
<th>No</th>
<th>Slap</th>
<th>Prio Mat-no</th>
<th>Reinforcement As</th>
<th>Point 1</th>
<th>Point 2</th>
<th>reflected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y1(m)</td>
<td>z1(m)</td>
<td>y2(m)</td>
</tr>
<tr>
<td>1</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.240</td>
<td>-1.160</td>
</tr>
<tr>
<td>2</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.240</td>
<td>1.160</td>
</tr>
<tr>
<td>3</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-2.000</td>
<td>0.780</td>
</tr>
<tr>
<td>4</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>2.000</td>
<td>-0.780</td>
</tr>
<tr>
<td>5</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-2.000</td>
<td>-0.780</td>
</tr>
<tr>
<td>6</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>1.240</td>
<td>1.160</td>
</tr>
<tr>
<td>7</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-2.000</td>
<td>0.780</td>
</tr>
<tr>
<td>8</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>2.000</td>
<td>0.780</td>
</tr>
</tbody>
</table>

Section 12 4Sections

Cross-section 13

distance between reinforcement and edge 0.120 m given

Polygonal cross-section

<table>
<thead>
<tr>
<th>y (m)</th>
<th>z (m)</th>
<th>Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-1.315</td>
<td>1</td>
</tr>
<tr>
<td>1.405</td>
<td>-1.315</td>
<td>2</td>
</tr>
<tr>
<td>2.155</td>
<td>-0.815</td>
<td>3</td>
</tr>
<tr>
<td>2.155</td>
<td>0.815</td>
<td>4</td>
</tr>
<tr>
<td>1.405</td>
<td>1.315</td>
<td>5</td>
</tr>
<tr>
<td>0.000</td>
<td>1.315</td>
<td>6</td>
</tr>
<tr>
<td>-1.405</td>
<td>1.315</td>
<td>7</td>
</tr>
<tr>
<td>-2.155</td>
<td>0.815</td>
<td>8</td>
</tr>
<tr>
<td>-2.155</td>
<td>-0.815</td>
<td>9</td>
</tr>
<tr>
<td>-1.405</td>
<td>-1.315</td>
<td>10</td>
</tr>
</tbody>
</table>

Point-, line- und ring-reinforcement

<table>
<thead>
<tr>
<th>No</th>
<th>Slap</th>
<th>Prio Mat-no</th>
<th>Reinforcement As</th>
<th>Point 1</th>
<th>Point 2</th>
<th>reflected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y1(m)</td>
<td>z1(m)</td>
<td>y2(m)</td>
</tr>
<tr>
<td>1</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.280</td>
<td>-1.200</td>
</tr>
<tr>
<td>2</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.280</td>
<td>1.200</td>
</tr>
<tr>
<td>3</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-2.000</td>
<td>0.810</td>
</tr>
<tr>
<td>4</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>2.000</td>
<td>-0.810</td>
</tr>
<tr>
<td>5</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-2.000</td>
<td>-0.810</td>
</tr>
<tr>
<td>6</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>1.280</td>
<td>1.200</td>
</tr>
<tr>
<td>7</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-2.000</td>
<td>0.810</td>
</tr>
<tr>
<td>8</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>2.000</td>
<td>0.810</td>
</tr>
</tbody>
</table>

Section 13 4Sections
Building member: Polygonaler Pfeiler - Höhe 41.05 m

Cross-section 14

distance between reinforcement and edge 0.120 m given

Polygonal cross-section

<table>
<thead>
<tr>
<th>y (m)</th>
<th>z (m)</th>
<th>Point</th>
<th>Concrete= Material 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-1.350</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.450</td>
<td>-1.350</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2.200</td>
<td>-0.850</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.200</td>
<td>0.850</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.450</td>
<td>1.350</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>1.350</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>-1.450</td>
<td>1.350</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>-2.200</td>
<td>0.850</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>-2.200</td>
<td>-0.850</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>-1.450</td>
<td>-1.350</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Point-, line- und ring-reinforcement

<table>
<thead>
<tr>
<th>No</th>
<th>Slap</th>
<th>Prio Mat-no</th>
<th>Reinforcement As</th>
<th>Point 1</th>
<th>Point 2</th>
<th>refle-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y1(m)</td>
<td>z1(m)</td>
<td>m</td>
</tr>
<tr>
<td>1</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.010000.0 cm2/m</td>
<td>-1.330</td>
<td>-1.220</td>
</tr>
<tr>
<td>2</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.010000.0 cm2/m</td>
<td>-1.330</td>
<td>1.220</td>
</tr>
<tr>
<td>3</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.010000.0 cm2/m</td>
<td>-2.080</td>
<td>0.850</td>
</tr>
<tr>
<td>4</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.010000.0 cm2/m</td>
<td>2.080</td>
<td>-0.850</td>
</tr>
<tr>
<td>5</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.010000.0 cm2/m</td>
<td>-2.080</td>
<td>-0.850</td>
</tr>
<tr>
<td>6</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.010000.0 cm2/m</td>
<td>1.330</td>
<td>1.220</td>
</tr>
<tr>
<td>7</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.010000.0 cm2/m</td>
<td>-2.080</td>
<td>0.850</td>
</tr>
<tr>
<td>8</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.010000.0 cm2/m</td>
<td>2.080</td>
<td>0.850</td>
</tr>
</tbody>
</table>

Section 14 4Sections

Cross-section 15

distance between reinforcement and edge 0.120 m given

Polygonal cross-section

<table>
<thead>
<tr>
<th>y (m)</th>
<th>z (m)</th>
<th>Point</th>
<th>Concrete= Material 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-1.385</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.495</td>
<td>-1.385</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2.245</td>
<td>-0.885</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.245</td>
<td>0.885</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.495</td>
<td>1.385</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>1.385</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>-1.495</td>
<td>1.385</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>-2.245</td>
<td>0.885</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>-2.245</td>
<td>-0.885</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>-1.495</td>
<td>-1.385</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Building member: Polygonaler Pfeiler - Höhe 41.05 m

Point-, line- und ring-reinforcement

<table>
<thead>
<tr>
<th>No</th>
<th>Slap</th>
<th>Pri</th>
<th>Mat-no</th>
<th>Reinforcement As</th>
<th>Point 1</th>
<th>Point 2</th>
<th>refle-</th>
<th>min</th>
<th>max</th>
<th>y1(m)</th>
<th>z1(m)</th>
<th>y2(m)</th>
<th>z2(m)</th>
<th>cted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.370</td>
<td>-1.260</td>
<td>1.370</td>
<td>-1.260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.370</td>
<td>1.260</td>
<td>1.370</td>
<td>1.260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-2.120</td>
<td>0.880</td>
<td>-2.120</td>
<td>-0.880</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>2.120</td>
<td>-0.880</td>
<td>2.120</td>
<td>0.880</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-2.120</td>
<td>-0.880</td>
<td>-1.370</td>
<td>-1.260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>1.370</td>
<td>1.260</td>
<td>2.120</td>
<td>0.880</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-2.120</td>
<td>0.880</td>
<td>-1.370</td>
<td>1.260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>2.120</td>
<td>0.880</td>
<td>1.370</td>
<td>1.260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 15 4 Sections

Cross-section 16

distance between reinforcement and edge 0.120 m given

Polygonal cross-section

<table>
<thead>
<tr>
<th>y (m)</th>
<th>z (m)</th>
<th>Point</th>
<th>Concrete= Material 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-1.420</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.540</td>
<td>-1.420</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2.290</td>
<td>-0.920</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.290</td>
<td>0.920</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.540</td>
<td>1.420</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>1.420</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>-1.540</td>
<td>1.420</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>-2.290</td>
<td>0.920</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>-2.290</td>
<td>-0.920</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>-1.540</td>
<td>-1.420</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Point-, line- und ring-reinforcement

<table>
<thead>
<tr>
<th>No</th>
<th>Slap</th>
<th>Pri</th>
<th>Mat-no</th>
<th>Reinforcement As</th>
<th>Point 1</th>
<th>Point 2</th>
<th>refle-</th>
<th>min</th>
<th>max</th>
<th>y1(m)</th>
<th>z1(m)</th>
<th>y2(m)</th>
<th>z2(m)</th>
<th>cted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.420</td>
<td>-1.300</td>
<td>1.420</td>
<td>-1.300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.420</td>
<td>1.300</td>
<td>1.420</td>
<td>1.300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-2.170</td>
<td>0.920</td>
<td>-2.170</td>
<td>-0.920</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>2.170</td>
<td>-0.920</td>
<td>2.170</td>
<td>0.920</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-2.170</td>
<td>-0.920</td>
<td>-1.420</td>
<td>-1.300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>1.420</td>
<td>1.300</td>
<td>2.170</td>
<td>0.920</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-2.170</td>
<td>0.920</td>
<td>-1.420</td>
<td>1.300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Line</td>
<td>1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>2.170</td>
<td>0.920</td>
<td>1.420</td>
<td>1.300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 16 4 Sections
Building member: Polygonaler Pfeiler - Höhe 41.05 m

Cross-section 17

distance between reinforcement and edge 0.120 m given

Polygonal cross-section 1

<table>
<thead>
<tr>
<th>y (m)</th>
<th>z (m)</th>
<th>Point</th>
<th>Concrete = Material 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-1.465</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.585</td>
<td>-1.465</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2.335</td>
<td>-0.965</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.335</td>
<td>0.965</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.585</td>
<td>1.465</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>1.465</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>-1.585</td>
<td>1.465</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>-2.335</td>
<td>0.965</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>-2.335</td>
<td>-0.965</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>-1.585</td>
<td>-1.465</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Point-, line- und ring-reinforcement

<table>
<thead>
<tr>
<th>No Slap</th>
<th>Prio Mat-no</th>
<th>Reinforcement As</th>
<th>Point 1</th>
<th>Point 2</th>
<th>refl-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>y1(m)</td>
<td>z1(m)</td>
<td>y2(m)</td>
</tr>
<tr>
<td>1</td>
<td>Line 1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.460</td>
<td>-1.340</td>
</tr>
<tr>
<td>2</td>
<td>Line 1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-1.460</td>
<td>1.340</td>
</tr>
<tr>
<td>3</td>
<td>Line 1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-2.210</td>
<td>0.960</td>
</tr>
<tr>
<td>4</td>
<td>Line 1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>2.210</td>
<td>-0.960</td>
</tr>
<tr>
<td>5</td>
<td>Line 1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-2.210</td>
<td>-0.960</td>
</tr>
<tr>
<td>6</td>
<td>Line 1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>1.460</td>
<td>1.340</td>
</tr>
<tr>
<td>7</td>
<td>Line 1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>-2.210</td>
<td>0.960</td>
</tr>
<tr>
<td>8</td>
<td>Line 1</td>
<td>2</td>
<td>0.01000.0 cm²/m</td>
<td>2.210</td>
<td>0.960</td>
</tr>
</tbody>
</table>

Cross-section 18

distance between reinforcement and edge 0.120 m given

Polygonal cross-section 1

<table>
<thead>
<tr>
<th>y (m)</th>
<th>z (m)</th>
<th>Point</th>
<th>Concrete = Material 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-1.490</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.630</td>
<td>-1.490</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2.380</td>
<td>-0.990</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.380</td>
<td>0.990</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.630</td>
<td>1.490</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>1.490</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>-1.630</td>
<td>1.490</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>-2.380</td>
<td>0.990</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>-2.380</td>
<td>-0.990</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>-1.630</td>
<td>-1.490</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Building member: Polygonaler Pfeiler - Höhe 41.05 m

Point-, line- und ring-reinforcement

<table>
<thead>
<tr>
<th>No</th>
<th>Slap</th>
<th>Prio</th>
<th>Mat-no</th>
<th>Reinforcement As</th>
<th>y1(m)</th>
<th>z1(m)</th>
<th>y2(m)</th>
<th>z2(m)</th>
<th>cted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Line 1</td>
<td>2</td>
<td></td>
<td>0.01000.0 cm²/m</td>
<td>-1.510</td>
<td>-1.370</td>
<td>1.510</td>
<td>-1.370</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Line 1</td>
<td>2</td>
<td></td>
<td>0.01000.0 cm²/m</td>
<td>-1.510</td>
<td>1.370</td>
<td>1.510</td>
<td>1.370</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Line 1</td>
<td>2</td>
<td></td>
<td>0.01000.0 cm²/m</td>
<td>-2.260</td>
<td>0.990</td>
<td>-2.260</td>
<td>-0.990</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Line 1</td>
<td>2</td>
<td></td>
<td>0.01000.0 cm²/m</td>
<td>2.260</td>
<td>-0.990</td>
<td>2.260</td>
<td>0.990</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Line 1</td>
<td>2</td>
<td></td>
<td>0.01000.0 cm²/m</td>
<td>-2.260</td>
<td>-0.960</td>
<td>-1.510</td>
<td>-1.370</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Line 1</td>
<td>2</td>
<td></td>
<td>0.01000.0 cm²/m</td>
<td>1.510</td>
<td>1.370</td>
<td>2.260</td>
<td>0.990</td>
<td></td>
</tr>
</tbody>
</table>

Cross-section 19

distance between reinforcement and edge 0.120 m given

Polygonal cross-section

<table>
<thead>
<tr>
<th>y (m)</th>
<th>z (m)</th>
<th>Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>-1.520</td>
<td>1</td>
</tr>
<tr>
<td>1.720</td>
<td>-1.520</td>
<td>2</td>
</tr>
<tr>
<td>2.470</td>
<td>-1.020</td>
<td>3</td>
</tr>
<tr>
<td>2.470</td>
<td>1.020</td>
<td>4</td>
</tr>
<tr>
<td>1.720</td>
<td>1.520</td>
<td>5</td>
</tr>
<tr>
<td>0.000</td>
<td>1.520</td>
<td>6</td>
</tr>
<tr>
<td>-1.720</td>
<td>1.520</td>
<td>7</td>
</tr>
<tr>
<td>-2.470</td>
<td>1.020</td>
<td>8</td>
</tr>
<tr>
<td>-2.470</td>
<td>-1.020</td>
<td>9</td>
</tr>
<tr>
<td>-1.720</td>
<td>-1.520</td>
<td>10</td>
</tr>
</tbody>
</table>

Section 18 5Sections

Section 19 1Local
Results

LCC 2 1st order theory, service loads

\[1.35(G+V)+1.50(P+Z+0.8T+S)+1.50 \times 0.6xW\]

LCC 2 1st order theory, design action for minimum reinforcement

\[1.35(G+V)+1.50(P+Z+0.8T+S)+1.50 \times 0.6xW\]

Creep deformations under sustained loading LCC 1 with creep value = 2.00

Material diagrams for analysis no. 5

<table>
<thead>
<tr>
<th>Memb Height</th>
<th>N (kN)</th>
<th>Mx (kNm)</th>
<th>My (kNm)</th>
<th>Vx (kN)</th>
<th>Vy (kN)</th>
<th>As/Ac (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41.05</td>
<td>-15612.0</td>
<td>12.3</td>
<td>-4410.0</td>
<td>12.7</td>
<td>-22.3 0.16</td>
</tr>
<tr>
<td>1</td>
<td>39.45</td>
<td>-15989.7</td>
<td>-389.3</td>
<td>-4639.6</td>
<td>12.7</td>
<td>-22.3 0.16</td>
</tr>
<tr>
<td>2</td>
<td>36.05</td>
<td>-16805.9</td>
<td>-1257.6</td>
<td>-5133.6</td>
<td>12.7</td>
<td>-22.3 0.17</td>
</tr>
<tr>
<td>3</td>
<td>33.75</td>
<td>-17165.3</td>
<td>-1834.9</td>
<td>-5460.1</td>
<td>12.7</td>
<td>-22.3 0.17</td>
</tr>
<tr>
<td>4</td>
<td>33.75</td>
<td>-17165.3</td>
<td>-1834.9</td>
<td>-5460.1</td>
<td>12.7</td>
<td>-22.3 0.16</td>
</tr>
<tr>
<td>4</td>
<td>31.45</td>
<td>-17549.5</td>
<td>-2387.9</td>
<td>-5772.7</td>
<td>12.7</td>
<td>-22.3 0.16</td>
</tr>
<tr>
<td>5</td>
<td>31.45</td>
<td>-17549.5</td>
<td>-2387.9</td>
<td>-5772.7</td>
<td>12.7</td>
<td>-22.3 0.30</td>
</tr>
<tr>
<td>5</td>
<td>29.15</td>
<td>-17959.2</td>
<td>-2911.4</td>
<td>-6069.5</td>
<td>12.7</td>
<td>-22.3 0.30</td>
</tr>
<tr>
<td>6</td>
<td>29.15</td>
<td>-17959.2</td>
<td>-2911.4</td>
<td>-6069.5</td>
<td>12.7</td>
<td>-22.3 0.45</td>
</tr>
<tr>
<td>6</td>
<td>28.00</td>
<td>-18177.1</td>
<td>-3161.1</td>
<td>-6211.6</td>
<td>12.7</td>
<td>-22.3 0.45</td>
</tr>
<tr>
<td>7</td>
<td>26.85</td>
<td>-18395.1</td>
<td>-3402.3</td>
<td>-6349.4</td>
<td>12.7</td>
<td>-22.3 0.45</td>
</tr>
<tr>
<td>8</td>
<td>26.85</td>
<td>-18395.1</td>
<td>-3402.3</td>
<td>-6349.4</td>
<td>12.7</td>
<td>-22.3 0.55</td>
</tr>
<tr>
<td>8</td>
<td>25.70</td>
<td>-18626.6</td>
<td>-3634.9</td>
<td>-6482.8</td>
<td>12.7</td>
<td>-22.3 0.55</td>
</tr>
<tr>
<td>9</td>
<td>24.55</td>
<td>-18858.0</td>
<td>-3858.6</td>
<td>-6611.8</td>
<td>12.7</td>
<td>-22.3 0.55</td>
</tr>
<tr>
<td>10</td>
<td>24.55</td>
<td>-18858.0</td>
<td>-3858.6</td>
<td>-6611.8</td>
<td>12.7</td>
<td>-22.3 0.63</td>
</tr>
<tr>
<td>10</td>
<td>23.40</td>
<td>-19103.4</td>
<td>-4073.5</td>
<td>-6736.3</td>
<td>12.7</td>
<td>-22.3 0.63</td>
</tr>
<tr>
<td>11</td>
<td>22.25</td>
<td>-19348.7</td>
<td>-4279.3</td>
<td>-6856.2</td>
<td>12.7</td>
<td>-22.3 0.63</td>
</tr>
<tr>
<td>12</td>
<td>21.10</td>
<td>-19608.2</td>
<td>-4476.1</td>
<td>-6971.6</td>
<td>12.7</td>
<td>-22.3 0.63</td>
</tr>
<tr>
<td>13</td>
<td>19.95</td>
<td>-19867.7</td>
<td>-4663.9</td>
<td>-7082.4</td>
<td>12.7</td>
<td>-22.3 0.63</td>
</tr>
<tr>
<td>14</td>
<td>19.95</td>
<td>-19867.7</td>
<td>-4663.9</td>
<td>-7082.4</td>
<td>12.7</td>
<td>-22.3 0.64</td>
</tr>
</tbody>
</table>
Stress resultants, 2nd oder theorie (Permanent load)

<table>
<thead>
<tr>
<th>Memb Height</th>
<th>N (kN)</th>
<th>Mx (kNm)</th>
<th>My (kNm)</th>
<th>Vx (kN)</th>
<th>Vy (kN)</th>
<th>As/Ac (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>18.80</td>
<td>-20415.9</td>
<td>-5012.6</td>
<td>-7198.7</td>
<td>12.7</td>
<td>-22.3 0.64</td>
</tr>
<tr>
<td>15</td>
<td>17.65</td>
<td>-20415.9</td>
<td>-5012.6</td>
<td>-7290.2</td>
<td>12.7</td>
<td>-22.3 0.64</td>
</tr>
<tr>
<td>16</td>
<td>17.50</td>
<td>-20704.9</td>
<td>-5173.4</td>
<td>-7387.2</td>
<td>12.7</td>
<td>-22.3 0.64</td>
</tr>
<tr>
<td>17</td>
<td>15.35</td>
<td>-20993.9</td>
<td>-5325.4</td>
<td>-7479.5</td>
<td>12.7</td>
<td>-22.3 0.64</td>
</tr>
<tr>
<td>18</td>
<td>15.35</td>
<td>-20993.9</td>
<td>-5325.4</td>
<td>-7479.5</td>
<td>12.7</td>
<td>-22.3 0.64</td>
</tr>
<tr>
<td>19</td>
<td>14.20</td>
<td>-21298.3</td>
<td>-5468.5</td>
<td>-7567.2</td>
<td>12.7</td>
<td>-22.3 0.64</td>
</tr>
<tr>
<td>20</td>
<td>13.05</td>
<td>-21602.6</td>
<td>-5602.9</td>
<td>-7650.3</td>
<td>12.7</td>
<td>-22.3 0.62</td>
</tr>
<tr>
<td>21</td>
<td>13.05</td>
<td>-21602.6</td>
<td>-5602.9</td>
<td>-7650.3</td>
<td>12.7</td>
<td>-22.3 0.62</td>
</tr>
<tr>
<td>22</td>
<td>13.05</td>
<td>-21602.6</td>
<td>-5602.9</td>
<td>-7650.3</td>
<td>12.7</td>
<td>-22.3 0.62</td>
</tr>
<tr>
<td>23</td>
<td>13.05</td>
<td>-21602.6</td>
<td>-5602.9</td>
<td>-7650.3</td>
<td>12.7</td>
<td>-22.3 0.62</td>
</tr>
</tbody>
</table>

{Block:Kriechverformung 1}

<table>
<thead>
<tr>
<th>Perm. load Pre-displace.</th>
<th>without Creep</th>
<th>with Creep</th>
<th>Creep-displace.</th>
</tr>
</thead>
<tbody>
<tr>
<td>x (mm)</td>
<td>y (mm)</td>
<td>x (mm)</td>
<td>y (mm)</td>
</tr>
<tr>
<td>1</td>
<td>11.05</td>
<td>-145.5</td>
<td>250.9</td>
</tr>
<tr>
<td>2</td>
<td>39.45</td>
<td>-135.3</td>
<td>231.9</td>
</tr>
<tr>
<td>3</td>
<td>36.05</td>
<td>-114.0</td>
<td>192.4</td>
</tr>
<tr>
<td>4</td>
<td>33.75</td>
<td>-100.2</td>
<td>167.0</td>
</tr>
<tr>
<td>5</td>
<td>31.45</td>
<td>-87.2</td>
<td>143.3</td>
</tr>
<tr>
<td>6</td>
<td>29.15</td>
<td>-77.1</td>
<td>121.5</td>
</tr>
<tr>
<td>7</td>
<td>31.45</td>
<td>-64.9</td>
<td>111.4</td>
</tr>
<tr>
<td>8</td>
<td>26.85</td>
<td>-63.9</td>
<td>101.7</td>
</tr>
<tr>
<td>9</td>
<td>25.70</td>
<td>-58.7</td>
<td>92.5</td>
</tr>
<tr>
<td>10</td>
<td>24.55</td>
<td>-53.7</td>
<td>83.9</td>
</tr>
<tr>
<td>11</td>
<td>23.40</td>
<td>-48.9</td>
<td>75.7</td>
</tr>
<tr>
<td>12</td>
<td>22.25</td>
<td>-44.4</td>
<td>68.0</td>
</tr>
<tr>
<td>13</td>
<td>21.10</td>
<td>-40.2</td>
<td>60.8</td>
</tr>
<tr>
<td>14</td>
<td>19.95</td>
<td>-36.2</td>
<td>54.1</td>
</tr>
<tr>
<td>15</td>
<td>18.80</td>
<td>-32.4</td>
<td>47.8</td>
</tr>
<tr>
<td>16</td>
<td>17.65</td>
<td>-28.8</td>
<td>42.0</td>
</tr>
<tr>
<td>17</td>
<td>16.50</td>
<td>-25.5</td>
<td>36.6</td>
</tr>
<tr>
<td>18</td>
<td>15.35</td>
<td>-22.4</td>
<td>31.6</td>
</tr>
<tr>
<td>19</td>
<td>14.20</td>
<td>-19.5</td>
<td>27.1</td>
</tr>
<tr>
<td>20</td>
<td>13.05</td>
<td>-16.8</td>
<td>22.9</td>
</tr>
<tr>
<td>21</td>
<td>11.90</td>
<td>-14.4</td>
<td>19.2</td>
</tr>
<tr>
<td>22</td>
<td>10.75</td>
<td>-12.1</td>
<td>15.8</td>
</tr>
<tr>
<td>23</td>
<td>9.60</td>
<td>-10.1</td>
<td>12.8</td>
</tr>
</tbody>
</table>
Building member: Polygonaler Pfeiler - Höhe 41.05 m

<table>
<thead>
<tr>
<th>Node</th>
<th>Height</th>
<th>Pre-displace.</th>
<th>without Creep</th>
<th>with Creep</th>
<th>Creep-displace.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x(mm)</td>
<td>y(mm)</td>
<td>x(mm)</td>
<td>y(mm)</td>
</tr>
<tr>
<td>24</td>
<td>8.45</td>
<td>-8.23</td>
<td>10.1</td>
<td>-0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>25</td>
<td>7.30</td>
<td>-6.5</td>
<td>7.8</td>
<td>-0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>26</td>
<td>6.15</td>
<td>-5.1</td>
<td>5.8</td>
<td>-0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>27</td>
<td>5.00</td>
<td>-3.8</td>
<td>4.1</td>
<td>-0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>28</td>
<td>3.85</td>
<td>-2.6</td>
<td>2.7</td>
<td>-0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>29</td>
<td>2.70</td>
<td>-1.6</td>
<td>1.5</td>
<td>-0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>30</td>
<td>1.55</td>
<td>-0.8</td>
<td>0.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>31</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

LCC 2 Design resistance analysis (2nd order theory, Basic combination)

Material diagrams for analysis no. 1 2

\[
1.35(G+V) + 1.50(P+Z+0.8T+S)+1.50\times0.6\times W
\]

Effective cross-section values

<table>
<thead>
<tr>
<th>Memb</th>
<th>Height</th>
<th>Bx (MN.m²)</th>
<th>By (MN.m²)</th>
<th>Kappa.x</th>
<th>Kappa.y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41.05</td>
<td>383113.7</td>
<td>1226297.0</td>
<td>0.000</td>
<td>-0.001</td>
</tr>
<tr>
<td>1</td>
<td>39.45</td>
<td>191006.7</td>
<td>658900.2</td>
<td>0.003</td>
<td>-0.002</td>
</tr>
<tr>
<td>2</td>
<td>39.45</td>
<td>266332.8</td>
<td>791866.2</td>
<td>-0.003</td>
<td>-0.002</td>
</tr>
<tr>
<td>3</td>
<td>36.05</td>
<td>56931.9</td>
<td>173200.6</td>
<td>-0.035</td>
<td>-0.010</td>
</tr>
<tr>
<td>3</td>
<td>33.75</td>
<td>40993.8</td>
<td>124715.7</td>
<td>0.000</td>
<td>-0.001</td>
</tr>
<tr>
<td>4</td>
<td>31.45</td>
<td>46783.5</td>
<td>139904.9</td>
<td>-0.045</td>
<td>-0.009</td>
</tr>
<tr>
<td>5</td>
<td>31.45</td>
<td>55923.3</td>
<td>165772.7</td>
<td>0.000</td>
<td>-0.002</td>
</tr>
<tr>
<td>5</td>
<td>29.15</td>
<td>54021.1</td>
<td>160136.3</td>
<td>0.000</td>
<td>-0.003</td>
</tr>
<tr>
<td>6</td>
<td>29.15</td>
<td>64293.4</td>
<td>188922.0</td>
<td>0.000</td>
<td>-0.003</td>
</tr>
<tr>
<td>6</td>
<td>28.00</td>
<td>62794.3</td>
<td>184517.4</td>
<td>0.000</td>
<td>-0.003</td>
</tr>
<tr>
<td>7</td>
<td>26.85</td>
<td>60924.8</td>
<td>179022.6</td>
<td>0.000</td>
<td>-0.004</td>
</tr>
<tr>
<td>8</td>
<td>26.85</td>
<td>72180.8</td>
<td>210997.6</td>
<td>0.000</td>
<td>-0.004</td>
</tr>
<tr>
<td>9</td>
<td>25.70</td>
<td>70097.7</td>
<td>204905.7</td>
<td>0.000</td>
<td>-0.004</td>
</tr>
<tr>
<td>9</td>
<td>24.55</td>
<td>67811.9</td>
<td>198219.0</td>
<td>0.000</td>
<td>-0.005</td>
</tr>
<tr>
<td>10</td>
<td>24.55</td>
<td>79452.1</td>
<td>229826.9</td>
<td>0.000</td>
<td>-0.004</td>
</tr>
<tr>
<td>10</td>
<td>23.40</td>
<td>76977.1</td>
<td>222719.8</td>
<td>0.000</td>
<td>-0.005</td>
</tr>
<tr>
<td>11</td>
<td>22.25</td>
<td>74464.6</td>
<td>215386.1</td>
<td>0.000</td>
<td>-0.006</td>
</tr>
<tr>
<td>12</td>
<td>22.25</td>
<td>87561.9</td>
<td>248048.8</td>
<td>0.000</td>
<td>-0.005</td>
</tr>
<tr>
<td>12</td>
<td>21.10</td>
<td>84973.5</td>
<td>240711.0</td>
<td>0.000</td>
<td>-0.005</td>
</tr>
</tbody>
</table>
Effective cross-section values

<table>
<thead>
<tr>
<th>Memb</th>
<th>Height</th>
<th>Bx (MN.m²)</th>
<th>By (MN.m²)</th>
<th>Kappa.x</th>
<th>Kappa.y</th>
<th>Kappa (°/oo per m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>19.95</td>
<td>82387.4</td>
<td>234653.9</td>
<td>0.000</td>
<td>-0.006</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>19.95</td>
<td>95617.2</td>
<td>266779.8</td>
<td>0.000</td>
<td>-0.005</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>19.95</td>
<td>92968.8</td>
<td>259385.3</td>
<td>0.000</td>
<td>-0.005</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>17.65</td>
<td>104376.1</td>
<td>288177.8</td>
<td>0.000</td>
<td>-0.005</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16.50</td>
<td>101751.6</td>
<td>275355.2</td>
<td>0.000</td>
<td>-0.005</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>15.35</td>
<td>111190.5</td>
<td>303982.1</td>
<td>0.000</td>
<td>-0.005</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>14.20</td>
<td>121300.7</td>
<td>321897.0</td>
<td>0.000</td>
<td>-0.005</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>13.05</td>
<td>123716.0</td>
<td>334591.8</td>
<td>0.000</td>
<td>-0.005</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>11.90</td>
<td>127130.7</td>
<td>348944.1</td>
<td>0.000</td>
<td>-0.005</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>10.75</td>
<td>130643.4</td>
<td>363449.4</td>
<td>0.000</td>
<td>-0.005</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>9.60</td>
<td>134979.6</td>
<td>378955.2</td>
<td>0.000</td>
<td>-0.005</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>8.45</td>
<td>147381.7</td>
<td>394461.4</td>
<td>0.000</td>
<td>-0.005</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>7.30</td>
<td>154352.5</td>
<td>409967.6</td>
<td>0.000</td>
<td>-0.005</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>6.15</td>
<td>163472.4</td>
<td>426474.8</td>
<td>0.000</td>
<td>-0.005</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5.00</td>
<td>172989.3</td>
<td>443981.8</td>
<td>0.000</td>
<td>-0.005</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>3.85</td>
<td>182133.6</td>
<td>461488.8</td>
<td>0.000</td>
<td>-0.005</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2.70</td>
<td>191387.0</td>
<td>479006.9</td>
<td>0.000</td>
<td>-0.005</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1.55</td>
<td>200652.5</td>
<td>496525.1</td>
<td>0.000</td>
<td>-0.005</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.00</td>
<td>210226.5</td>
<td>514043.7</td>
<td>0.000</td>
<td>-0.005</td>
<td></td>
</tr>
</tbody>
</table>

Stress resultants

<table>
<thead>
<tr>
<th>Memb</th>
<th>Height</th>
<th>NEd (kN)</th>
<th>MEdx (kNm)</th>
<th>MEdy (kNm)</th>
<th>VEdx (kN)</th>
<th>VEdy (kN)</th>
<th>M2/M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41.05</td>
<td>28687.2</td>
<td>-152.9</td>
<td>-3165.0</td>
<td>51.6</td>
<td>-339.1</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>39.45</td>
<td>29197.1</td>
<td>-1760.9</td>
<td>-3377.0</td>
<td>51.6</td>
<td>-346.3</td>
<td>1.15</td>
</tr>
<tr>
<td>2</td>
<td>36.05</td>
<td>30299.0</td>
<td>-5249.8</td>
<td>-3829.0</td>
<td>51.6</td>
<td>-361.6</td>
<td>1.66</td>
</tr>
<tr>
<td>3</td>
<td>33.75</td>
<td>30784.2</td>
<td>-7614.9</td>
<td>-4129.5</td>
<td>51.6</td>
<td>-370.3</td>
<td>1.93</td>
</tr>
<tr>
<td>4</td>
<td>31.45</td>
<td>31302.8</td>
<td>-9939.2</td>
<td>-4421.8</td>
<td>51.6</td>
<td>-379.0</td>
<td>2.12</td>
</tr>
<tr>
<td>5</td>
<td>29.15</td>
<td>31855.9</td>
<td>-12209.4</td>
<td>-4705.0</td>
<td>51.6</td>
<td>-387.7</td>
<td>2.33</td>
</tr>
<tr>
<td>6</td>
<td>26.85</td>
<td>32150.2</td>
<td>-13321.4</td>
<td>-4843.0</td>
<td>51.6</td>
<td>-392.0</td>
<td>2.29</td>
</tr>
<tr>
<td>7</td>
<td>25.70</td>
<td>32756.9</td>
<td>-14416.8</td>
<td>-4978.5</td>
<td>51.6</td>
<td>-396.4</td>
<td>2.29</td>
</tr>
<tr>
<td>8</td>
<td>24.55</td>
<td>33069.4</td>
<td>-15494.7</td>
<td>-5115.1</td>
<td>51.6</td>
<td>-400.7</td>
<td>2.31</td>
</tr>
<tr>
<td>9</td>
<td>23.40</td>
<td>33400.5</td>
<td>-16554.3</td>
<td>-5241.8</td>
<td>51.6</td>
<td>-405.1</td>
<td>2.32</td>
</tr>
<tr>
<td>10</td>
<td>22.25</td>
<td>33731.7</td>
<td>-17594.8</td>
<td>-5369.4</td>
<td>51.6</td>
<td>-409.4</td>
<td>2.32</td>
</tr>
<tr>
<td>11</td>
<td>21.10</td>
<td>34082.0</td>
<td>-18615.5</td>
<td>-5494.2</td>
<td>51.6</td>
<td>-413.8</td>
<td>2.32</td>
</tr>
<tr>
<td>12</td>
<td>20.00</td>
<td>34432.4</td>
<td>-19615.9</td>
<td>-5616.2</td>
<td>51.6</td>
<td>-418.1</td>
<td>2.32</td>
</tr>
<tr>
<td>13</td>
<td>19.00</td>
<td>34802.4</td>
<td>-20595.5</td>
<td>-5735.3</td>
<td>51.6</td>
<td>-422.5</td>
<td>2.31</td>
</tr>
<tr>
<td>14</td>
<td>18.00</td>
<td>35172.5</td>
<td>-21554.0</td>
<td>-5851.4</td>
<td>51.6</td>
<td>-426.8</td>
<td>2.30</td>
</tr>
<tr>
<td>15</td>
<td>17.00</td>
<td>35562.6</td>
<td>-22490.9</td>
<td>-5964.6</td>
<td>51.6</td>
<td>-431.2</td>
<td>2.28</td>
</tr>
<tr>
<td>16</td>
<td>16.00</td>
<td>35952.8</td>
<td>-23405.9</td>
<td>-6074.7</td>
<td>51.6</td>
<td>-435.5</td>
<td>2.27</td>
</tr>
<tr>
<td>17</td>
<td>15.00</td>
<td>36363.7</td>
<td>-24298.9</td>
<td>-6181.7</td>
<td>51.6</td>
<td>-439.9</td>
<td>2.25</td>
</tr>
<tr>
<td>18</td>
<td>14.00</td>
<td>36774.5</td>
<td>-25169.8</td>
<td>-6285.7</td>
<td>51.6</td>
<td>-444.2</td>
<td>2.23</td>
</tr>
<tr>
<td>19</td>
<td>13.05</td>
<td>37674.5</td>
<td>-26018.3</td>
<td>-6386.5</td>
<td>51.6</td>
<td>-448.5</td>
<td>2.21</td>
</tr>
</tbody>
</table>
Stress resultants

<table>
<thead>
<tr>
<th>Membr.</th>
<th>Height</th>
<th>NEd (kN)</th>
<th>MEdx (kNm)</th>
<th>MEddy (kNm)</th>
<th>VEdx (kN)</th>
<th>VEdy (kN)</th>
<th>M2/M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>11.90</td>
<td>-37206.5</td>
<td>-26844.5</td>
<td>-6484.3</td>
<td>51.6</td>
<td>-452.9</td>
<td>2.19</td>
</tr>
<tr>
<td>21</td>
<td>10.75</td>
<td>-37638.5</td>
<td>-27648.3</td>
<td>-6579.0</td>
<td>51.6</td>
<td>-457.2</td>
<td>2.16</td>
</tr>
<tr>
<td>22</td>
<td>9.60</td>
<td>-38092.1</td>
<td>-28429.8</td>
<td>-6670.5</td>
<td>51.6</td>
<td>-461.6</td>
<td>2.14</td>
</tr>
<tr>
<td>23</td>
<td>8.45</td>
<td>-38545.7</td>
<td>-29189.2</td>
<td>-6759.0</td>
<td>51.6</td>
<td>-465.9</td>
<td>2.11</td>
</tr>
<tr>
<td>24</td>
<td>7.30</td>
<td>-39021.4</td>
<td>-29926.4</td>
<td>-6844.4</td>
<td>51.6</td>
<td>-470.3</td>
<td>2.09</td>
</tr>
<tr>
<td>25</td>
<td>6.15</td>
<td>-39497.2</td>
<td>-30641.9</td>
<td>-6926.7</td>
<td>51.6</td>
<td>-474.6</td>
<td>2.06</td>
</tr>
<tr>
<td>26</td>
<td>5.00</td>
<td>-39999.1</td>
<td>-31336.0</td>
<td>-7006.0</td>
<td>51.6</td>
<td>-479.0</td>
<td>2.04</td>
</tr>
<tr>
<td>27</td>
<td>3.85</td>
<td>-40501.1</td>
<td>-32009.5</td>
<td>-7082.4</td>
<td>51.6</td>
<td>-483.3</td>
<td>2.01</td>
</tr>
<tr>
<td>28</td>
<td>2.70</td>
<td>-41022.5</td>
<td>-32662.1</td>
<td>-7155.7</td>
<td>51.6</td>
<td>-487.7</td>
<td>1.98</td>
</tr>
<tr>
<td>29</td>
<td>1.55</td>
<td>-41544.0</td>
<td>-33293.9</td>
<td>-7226.1</td>
<td>51.6</td>
<td>-492.0</td>
<td>1.96</td>
</tr>
<tr>
<td>30</td>
<td>0.00</td>
<td>-42268.6</td>
<td>-34111.3</td>
<td>-7316.2</td>
<td>51.6</td>
<td>-497.9</td>
<td>1.92</td>
</tr>
</tbody>
</table>

Displacements

<table>
<thead>
<tr>
<th>Node</th>
<th>Height</th>
<th>Displacement (mm)</th>
<th>Rotation (o/oo)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x.pre</td>
<td>y.pre</td>
</tr>
<tr>
<td>1</td>
<td>41.05</td>
<td>-40.10</td>
<td>331.14</td>
</tr>
<tr>
<td>2</td>
<td>39.45</td>
<td>-37.37</td>
<td>307.35</td>
</tr>
<tr>
<td>3</td>
<td>36.05</td>
<td>-31.63</td>
<td>257.39</td>
</tr>
<tr>
<td>4</td>
<td>33.75</td>
<td>-27.87</td>
<td>224.90</td>
</tr>
<tr>
<td>5</td>
<td>31.45</td>
<td>-24.30</td>
<td>194.20</td>
</tr>
<tr>
<td>6</td>
<td>29.15</td>
<td>-20.94</td>
<td>165.59</td>
</tr>
<tr>
<td>7</td>
<td>28.00</td>
<td>-19.35</td>
<td>152.13</td>
</tr>
<tr>
<td>8</td>
<td>26.85</td>
<td>-17.82</td>
<td>139.24</td>
</tr>
<tr>
<td>9</td>
<td>25.70</td>
<td>-16.35</td>
<td>126.94</td>
</tr>
<tr>
<td>10</td>
<td>24.55</td>
<td>-14.94</td>
<td>115.24</td>
</tr>
<tr>
<td>11</td>
<td>23.40</td>
<td>-13.60</td>
<td>104.14</td>
</tr>
<tr>
<td>12</td>
<td>22.25</td>
<td>-12.32</td>
<td>93.64</td>
</tr>
<tr>
<td>13</td>
<td>21.10</td>
<td>-11.10</td>
<td>83.75</td>
</tr>
<tr>
<td>14</td>
<td>19.95</td>
<td>-9.95</td>
<td>74.46</td>
</tr>
<tr>
<td>15</td>
<td>18.80</td>
<td>-8.87</td>
<td>65.77</td>
</tr>
<tr>
<td>16</td>
<td>17.65</td>
<td>-7.86</td>
<td>57.68</td>
</tr>
<tr>
<td>17</td>
<td>16.50</td>
<td>-6.91</td>
<td>50.17</td>
</tr>
<tr>
<td>18</td>
<td>15.35</td>
<td>-6.02</td>
<td>43.24</td>
</tr>
<tr>
<td>19</td>
<td>14.20</td>
<td>-5.20</td>
<td>36.89</td>
</tr>
<tr>
<td>20</td>
<td>13.05</td>
<td>-4.45</td>
<td>31.09</td>
</tr>
<tr>
<td>21</td>
<td>11.90</td>
<td>-3.75</td>
<td>25.84</td>
</tr>
<tr>
<td>22</td>
<td>10.75</td>
<td>-3.12</td>
<td>21.12</td>
</tr>
<tr>
<td>23</td>
<td>9.60</td>
<td>-2.56</td>
<td>16.93</td>
</tr>
<tr>
<td>24</td>
<td>8.45</td>
<td>-2.05</td>
<td>13.24</td>
</tr>
<tr>
<td>25</td>
<td>7.30</td>
<td>-1.60</td>
<td>10.04</td>
</tr>
<tr>
<td>26</td>
<td>6.15</td>
<td>-1.20</td>
<td>7.31</td>
</tr>
<tr>
<td>27</td>
<td>5.00</td>
<td>-0.87</td>
<td>5.03</td>
</tr>
<tr>
<td>28</td>
<td>3.85</td>
<td>-0.58</td>
<td>3.18</td>
</tr>
<tr>
<td>29</td>
<td>2.70</td>
<td>-0.35</td>
<td>1.76</td>
</tr>
<tr>
<td>30</td>
<td>1.55</td>
<td>-0.17</td>
<td>0.74</td>
</tr>
<tr>
<td>31</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Building member: Polygonaler Pfeiler - Höhe 41.05 m

Design dimensioning

| Mem Height NRd(kN) | MRe(kNm) | MRey(kNm) | Eps1 | Eps2 | Epss | Beta Util | As/Ac
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 41.05 -221834.</td>
<td>-1181.</td>
<td>-24478.</td>
<td>-2.68</td>
<td>-1.09</td>
<td>-1.11</td>
<td>-93.0</td>
<td>0.129</td>
</tr>
<tr>
<td>2 39.45 -142775.</td>
<td>-8614.</td>
<td>-16514.</td>
<td>-2.92</td>
<td>-0.77</td>
<td>-0.80</td>
<td>213.4</td>
<td>0.204</td>
</tr>
<tr>
<td>3 37.75 -90336.</td>
<td>-48938.</td>
<td>-94938.</td>
<td>-3.11</td>
<td>-0.51</td>
<td>-0.55</td>
<td>216.3</td>
<td>0.119</td>
</tr>
<tr>
<td>4 36.05 -100117.</td>
<td>-17347.</td>
<td>-12652.</td>
<td>-3.50</td>
<td>0.42</td>
<td>0.27</td>
<td>194.3</td>
<td>0.303</td>
</tr>
<tr>
<td>5 33.75 -97642.</td>
<td>-24153.</td>
<td>-13098.</td>
<td>-3.50</td>
<td>0.74</td>
<td>0.58</td>
<td>191.3</td>
<td>0.315</td>
</tr>
<tr>
<td>6 31.45 -88145.</td>
<td>-27978.</td>
<td>-12447.</td>
<td>-3.50</td>
<td>1.12</td>
<td>0.94</td>
<td>189.7</td>
<td>0.355</td>
</tr>
<tr>
<td>7 29.15 -99807.</td>
<td>-34818.</td>
<td>-13417.</td>
<td>-3.50</td>
<td>1.33</td>
<td>1.15</td>
<td>189.4</td>
<td>0.351</td>
</tr>
<tr>
<td>8 26.85 -110386.</td>
<td>-46817.</td>
<td>-15164.</td>
<td>-3.50</td>
<td>1.20</td>
<td>1.45</td>
<td>189.6</td>
<td>0.308</td>
</tr>
<tr>
<td>9 24.55 -107880.</td>
<td>-54007.</td>
<td>-14099.</td>
<td>-3.50</td>
<td>1.58</td>
<td>1.35</td>
<td>189.3</td>
<td>0.310</td>
</tr>
<tr>
<td>10 22.25 -101014.</td>
<td>-60919.</td>
<td>-16453.</td>
<td>-3.50</td>
<td>1.83</td>
<td>1.59</td>
<td>189.0</td>
<td>0.334</td>
</tr>
<tr>
<td>11 20.05 -110386.</td>
<td>-74958.</td>
<td>-17674.</td>
<td>-3.50</td>
<td>2.00</td>
<td>1.77</td>
<td>188.9</td>
<td>0.306</td>
</tr>
<tr>
<td>12 17.65 -104326.</td>
<td>-54957.</td>
<td>-15828.</td>
<td>-3.50</td>
<td>2.00</td>
<td>1.77</td>
<td>188.9</td>
<td>0.318</td>
</tr>
<tr>
<td>13 15.35 -101432.</td>
<td>-54957.</td>
<td>-15828.</td>
<td>-3.50</td>
<td>2.00</td>
<td>1.77</td>
<td>188.9</td>
<td>0.320</td>
</tr>
<tr>
<td>14 13.05 -99807.</td>
<td>-54007.</td>
<td>-13417.</td>
<td>-3.50</td>
<td>2.00</td>
<td>1.77</td>
<td>188.9</td>
<td>0.322</td>
</tr>
<tr>
<td>15 10.75 -90336.</td>
<td>-48938.</td>
<td>-94938.</td>
<td>-3.50</td>
<td>2.00</td>
<td>1.77</td>
<td>188.9</td>
<td>0.324</td>
</tr>
<tr>
<td>16 8.45 -88145.</td>
<td>-27978.</td>
<td>-12447.</td>
<td>-3.50</td>
<td>2.00</td>
<td>1.77</td>
<td>188.9</td>
<td>0.326</td>
</tr>
<tr>
<td>17 6.15 -99807.</td>
<td>-54007.</td>
<td>-13417.</td>
<td>-3.50</td>
<td>2.00</td>
<td>1.77</td>
<td>188.9</td>
<td>0.328</td>
</tr>
<tr>
<td>18 3.85 -90336.</td>
<td>-48938.</td>
<td>-94938.</td>
<td>-3.50</td>
<td>2.00</td>
<td>1.77</td>
<td>188.9</td>
<td>0.330</td>
</tr>
<tr>
<td>19 1.55 -221834.</td>
<td>-1181.</td>
<td>-24478.</td>
<td>-2.68</td>
<td>-1.09</td>
<td>-1.11</td>
<td>-93.0</td>
<td>0.129</td>
</tr>
<tr>
<td>20 0.00 -221834.</td>
<td>-1181.</td>
<td>-24478.</td>
<td>-2.68</td>
<td>-1.09</td>
<td>-1.11</td>
<td>-93.0</td>
<td>0.129</td>
</tr>
</tbody>
</table>
Building member: Polygonaler Pfeiler – Höhe 41.05 m

Foundation loads [Type: 1 = 1.00-fold, 2 = gamma-fold]

1.00-times foundation loads apply for geo-static verification and gamma-times foundation loads apply for design dimensioning for the following building members.

<table>
<thead>
<tr>
<th>Lcc</th>
<th>Type</th>
<th>Pz</th>
<th>Mx</th>
<th>My</th>
<th>Hx</th>
<th>Hy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Th1O 1</td>
<td>30746.3</td>
<td>11688.2</td>
<td>4016.5</td>
<td>-35.7</td>
<td>334.1</td>
</tr>
<tr>
<td></td>
<td>Th2O-Th1O</td>
<td>10595.2</td>
<td>1358.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>Th1O 2</td>
<td>42268.6</td>
<td>17396.8</td>
<td>5285.0</td>
<td>-51.7</td>
<td>497.9</td>
</tr>
<tr>
<td></td>
<td>Th2O-Th1O</td>
<td>16714.5</td>
<td>2031.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Required reinforcement

The reinforcement may not be specified smaller than, the assumption made for calculation of the deflections of the members.

<table>
<thead>
<tr>
<th>No</th>
<th>R</th>
<th>M</th>
<th>min.As</th>
<th>max.As</th>
<th>required.As</th>
<th>Coordinates (m)</th>
<th>As/A.gross = 0.16 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(cm²)</td>
<td>(cm²)</td>
<td>(cm²) cm²/m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.</td>
<td>3880.</td>
<td>46. 11.9</td>
<td>-1.940 -1.540</td>
<td>1.940 -1.540</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0.</td>
<td>3880.</td>
<td>46. 11.9</td>
<td>-1.940 1.540</td>
<td>1.940 1.540</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0.</td>
<td>2080.</td>
<td>25. 11.9</td>
<td>-2.690 1.040</td>
<td>-2.690 -1.040</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0.</td>
<td>2080.</td>
<td>25. 11.9</td>
<td>2.690 -1.040</td>
<td>2.690 1.040</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0.</td>
<td>901.</td>
<td>11. 11.9</td>
<td>-2.690 -1.040</td>
<td>-1.940 -1.540</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>0.</td>
<td>901.</td>
<td>11. 11.9</td>
<td>1.940 1.540</td>
<td>2.690 1.040</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>0.</td>
<td>901.</td>
<td>11. 11.9</td>
<td>-1.940 1.540</td>
<td>-2.690 1.040</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>0.</td>
<td>901.</td>
<td>11. 11.9</td>
<td>2.690 1.040</td>
<td>1.940 1.540</td>
</tr>
<tr>
<td>Total</td>
<td>0.0</td>
<td>15525.6</td>
<td>185.1</td>
<td>Section 1</td>
<td>As/A.gross = 0.16 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>R</th>
<th>M</th>
<th>min.As</th>
<th>max.As</th>
<th>required.As</th>
<th>Coordinates (m)</th>
<th>As/A.gross = 0.16 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(cm²)</td>
<td>(cm²)</td>
<td>(cm²) cm²/m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.</td>
<td>3240.</td>
<td>29. 9.0</td>
<td>-1.620 -1.350</td>
<td>1.620 -1.350</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0.</td>
<td>3240.</td>
<td>29. 9.0</td>
<td>-1.620 1.350</td>
<td>1.620 1.350</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0.</td>
<td>1700.</td>
<td>15. 9.0</td>
<td>-2.370 0.850</td>
<td>-2.370 -0.850</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0.</td>
<td>1700.</td>
<td>15. 9.0</td>
<td>2.370 -0.850</td>
<td>2.370 0.850</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0.</td>
<td>901.</td>
<td>8. 9.0</td>
<td>-2.370 0.850</td>
<td>-1.620 -1.350</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>0.</td>
<td>901.</td>
<td>8. 9.0</td>
<td>1.620 1.350</td>
<td>2.370 0.850</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>0.</td>
<td>901.</td>
<td>8. 9.0</td>
<td>-2.370 0.850</td>
<td>-1.620 1.350</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>0.</td>
<td>901.</td>
<td>8. 9.0</td>
<td>2.370 0.850</td>
<td>1.620 1.350</td>
</tr>
<tr>
<td>Total</td>
<td>0.0</td>
<td>13485.6</td>
<td>121.8</td>
<td>Section 2</td>
<td>As/A.gross = 0.16 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Building member: Polygonaler Pfeiler - Höhe 41.05 m

<table>
<thead>
<tr>
<th>No</th>
<th>R</th>
<th>M</th>
<th>min. As (cm²)</th>
<th>max. As (cm²)</th>
<th>required. As (cm²)</th>
<th>Coordinates (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>As/m²</td>
<td>y1</td>
<td>z1</td>
<td>y2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.3240</td>
<td>51.56</td>
<td>-1.620</td>
<td>1.620</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0.3240</td>
<td>51.56</td>
<td>-1.620</td>
<td>1.620</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0.1700</td>
<td>27.56</td>
<td>-2.370</td>
<td>0.850</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0.1700</td>
<td>27.56</td>
<td>2.370</td>
<td>0.850</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0.901</td>
<td>14.56</td>
<td>-2.370</td>
<td>-0.850</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>0.901</td>
<td>14.56</td>
<td>1.620</td>
<td>1.350</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>0.901</td>
<td>14.56</td>
<td>-2.370</td>
<td>0.850</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>0.901</td>
<td>14.56</td>
<td>2.370</td>
<td>0.850</td>
</tr>
</tbody>
</table>

Total: 13485.6 cm²/m²

As/A.gross = 0.16%

<table>
<thead>
<tr>
<th>No</th>
<th>R</th>
<th>M</th>
<th>min. As (cm²)</th>
<th>max. As (cm²)</th>
<th>required. As (cm²)</th>
<th>Coordinates (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>As/m²</td>
<td>y1</td>
<td>z1</td>
<td>y2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.1820</td>
<td>21.3</td>
<td>-1.090</td>
<td>-0.910</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0.1820</td>
<td>21.3</td>
<td>-1.090</td>
<td>0.910</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0.1000</td>
<td>11.7</td>
<td>-1.660</td>
<td>0.500</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0.1000</td>
<td>11.7</td>
<td>1.660</td>
<td>0.500</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0.854</td>
<td>10.0</td>
<td>-1.660</td>
<td>-0.500</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>0.854</td>
<td>10.0</td>
<td>1.660</td>
<td>0.500</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>0.854</td>
<td>10.0</td>
<td>-1.660</td>
<td>0.500</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>0.854</td>
<td>10.0</td>
<td>1.660</td>
<td>0.500</td>
</tr>
</tbody>
</table>

Total: 9059.0 cm²/m²

As/A.gross = 0.17%

<table>
<thead>
<tr>
<th>No</th>
<th>R</th>
<th>M</th>
<th>min. As (cm²)</th>
<th>max. As (cm²)</th>
<th>required. As (cm²)</th>
<th>Coordinates (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>As/m²</td>
<td>y1</td>
<td>z1</td>
<td>y2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.2000</td>
<td>43.7</td>
<td>-1.000</td>
<td>-0.990</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0.2000</td>
<td>43.7</td>
<td>-1.000</td>
<td>0.990</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0.1140</td>
<td>24.9</td>
<td>-1.750</td>
<td>0.570</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0.1140</td>
<td>24.9</td>
<td>1.750</td>
<td>0.570</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0.859</td>
<td>18.8</td>
<td>-1.750</td>
<td>-0.570</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>0.859</td>
<td>18.8</td>
<td>1.000</td>
<td>0.990</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>0.859</td>
<td>18.8</td>
<td>-1.750</td>
<td>0.570</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>0.859</td>
<td>18.8</td>
<td>1.750</td>
<td>0.570</td>
</tr>
</tbody>
</table>

Total: 9718.4 cm²/m²

As/A.gross = 0.45%
Building member: Polygonaler Pfeiler - Höhe 41.05 m

<table>
<thead>
<tr>
<th>No</th>
<th>R</th>
<th>M</th>
<th>min.As (cm²)</th>
<th>max.As (cm²)</th>
<th>required.As (cm²)</th>
<th>Coordinates (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y₁ z₁ y₂ z₂</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.0 2120.0</td>
<td>94.6 44.6</td>
<td>-1.060 -1.020</td>
<td>1.060 -1.020</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0.0 2120.0</td>
<td>94.6 44.6</td>
<td>-1.060 -1.020</td>
<td>1.060 -1.020</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0.0 1040.0</td>
<td>46.4 44.6</td>
<td>-1.810 0.520</td>
<td>-1.810 -0.520</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0.0 1040.0</td>
<td>46.4 44.6</td>
<td>1.810 -0.520</td>
<td>1.810 0.520</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0.0 901.4</td>
<td>40.2 44.6</td>
<td>-1.810 0.520</td>
<td>-1.810 -0.520</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>0.0 901.4</td>
<td>40.2 44.6</td>
<td>1.810 0.520</td>
<td>1.810 0.520</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>0.0 901.4</td>
<td>40.2 44.6</td>
<td>-1.810 0.520</td>
<td>-1.810 -0.520</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>0.0 901.4</td>
<td>40.2 44.6</td>
<td>1.810 0.520</td>
<td>1.810 0.520</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2</td>
<td>0.0 2200.0</td>
<td>117. 53.1</td>
<td>-1.100 -1.020</td>
<td>1.100 -1.020</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2</td>
<td>0.0 2200.0</td>
<td>117. 53.1</td>
<td>-1.100 1.020</td>
<td>1.100 1.020</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>2</td>
<td>0.0 1100.0</td>
<td>58. 53.1</td>
<td>-1.850 0.550</td>
<td>-1.850 -0.550</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>2</td>
<td>0.0 1100.0</td>
<td>58. 53.1</td>
<td>1.850 -0.550</td>
<td>1.850 0.550</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>2</td>
<td>0.0 885.0</td>
<td>47. 53.1</td>
<td>-1.850 0.550</td>
<td>-1.850 -0.550</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>2</td>
<td>0.0 885.0</td>
<td>47. 53.1</td>
<td>1.850 0.550</td>
<td>1.850 0.550</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>2</td>
<td>0.0 885.0</td>
<td>47. 53.1</td>
<td>-1.850 0.550</td>
<td>-1.850 -0.550</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>2</td>
<td>0.0 885.0</td>
<td>47. 53.1</td>
<td>1.850 0.550</td>
<td>1.850 0.550</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>2</td>
<td>0.0 2300.0</td>
<td>121. 53.1</td>
<td>-1.150 -1.090</td>
<td>1.150 -1.090</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>2</td>
<td>0.0 2300.0</td>
<td>121. 53.1</td>
<td>-1.150 1.090</td>
<td>1.150 1.090</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>2</td>
<td>0.0 1400.0</td>
<td>74. 53.1</td>
<td>-1.900 0.700</td>
<td>-1.900 -0.700</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>2</td>
<td>0.0 1400.0</td>
<td>74. 53.1</td>
<td>1.900 0.700</td>
<td>1.900 0.700</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>2</td>
<td>0.0 845.0</td>
<td>45. 53.1</td>
<td>-1.900 0.700</td>
<td>-1.900 -0.700</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>2</td>
<td>0.0 845.0</td>
<td>45. 53.1</td>
<td>1.900 0.700</td>
<td>1.900 0.700</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>2</td>
<td>0.0 845.0</td>
<td>45. 53.1</td>
<td>-1.900 0.700</td>
<td>-1.900 -0.700</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>2</td>
<td>0.0 845.0</td>
<td>45. 53.1</td>
<td>1.900 0.700</td>
<td>1.900 0.700</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>2</td>
<td>0.0 2400.0</td>
<td>132. 55.2</td>
<td>-1.200 -1.160</td>
<td>1.200 -1.160</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>2</td>
<td>0.0 2400.0</td>
<td>132. 55.2</td>
<td>-1.200 1.160</td>
<td>1.200 1.160</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>2</td>
<td>0.0 1480.0</td>
<td>82. 55.2</td>
<td>-2.000 0.780</td>
<td>-2.000 -0.780</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>2</td>
<td>0.0 1480.0</td>
<td>82. 55.2</td>
<td>2.000 0.780</td>
<td>2.000 0.780</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>2</td>
<td>0.0 841.0</td>
<td>46. 55.2</td>
<td>-2.000 0.780</td>
<td>-2.000 -0.780</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>2</td>
<td>0.0 841.0</td>
<td>46. 55.2</td>
<td>2.000 0.780</td>
<td>2.000 0.780</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>2</td>
<td>0.0 841.0</td>
<td>46. 55.2</td>
<td>-2.000 0.780</td>
<td>-2.000 -0.780</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>2</td>
<td>0.0 841.0</td>
<td>46. 55.2</td>
<td>2.000 0.780</td>
<td>2.000 0.780</td>
</tr>
</tbody>
</table>

Total
1.0 25.6 443.1 Section 8 As/A.gross = 0.55 %

1.0 10140.4 538.2 Section 9 As/A.gross = 0.63 %

1.0 10781.4 569.5 Section 10 As/A.gross = 0.63 %

1.0 11123.1 614.0 Section 11 As/A.gross = 0.64 %

1.0 11478.8 641.0 Section 12 As/A.gross = 0.64 %
Building member: Polygonaler Pfeiler - Höhe 41.05 m

<table>
<thead>
<tr>
<th>No</th>
<th>R</th>
<th>M</th>
<th>(cm²)</th>
<th>(cm²)</th>
<th>(cm²/m)</th>
<th>y1</th>
<th>z1</th>
<th>y2</th>
<th>z2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2560.</td>
<td>143.</td>
<td>56.0</td>
<td>1.280</td>
<td>1.200</td>
<td>1.280</td>
<td>1.200</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2560.</td>
<td>143.</td>
<td>56.0</td>
<td>2.000</td>
<td>0.810</td>
<td>2.000</td>
<td>0.810</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1620.</td>
<td>91.</td>
<td>56.0</td>
<td>2.000</td>
<td>0.810</td>
<td>2.000</td>
<td>0.810</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1620.</td>
<td>91.</td>
<td>56.0</td>
<td>2.000</td>
<td>0.810</td>
<td>2.000</td>
<td>0.810</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>819.</td>
<td>46.</td>
<td>56.0</td>
<td>1.280</td>
<td>1.200</td>
<td>2.000</td>
<td>0.810</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>819.</td>
<td>46.</td>
<td>56.0</td>
<td>1.280</td>
<td>1.200</td>
<td>2.000</td>
<td>0.810</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>819.</td>
<td>46.</td>
<td>56.0</td>
<td>2.000</td>
<td>0.810</td>
<td>1.280</td>
<td>1.200</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>819.</td>
<td>46.</td>
<td>56.0</td>
<td>2.000</td>
<td>0.810</td>
<td>1.280</td>
<td>1.200</td>
</tr>
</tbody>
</table>

Total: 0.0 11635.4 651.8 Section 13 As/A.gross = 0.62 %

<table>
<thead>
<tr>
<th>No</th>
<th>R</th>
<th>M</th>
<th>(cm²)</th>
<th>(cm²)</th>
<th>(cm²/m)</th>
<th>y1</th>
<th>z1</th>
<th>y2</th>
<th>z2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2660.</td>
<td>146.</td>
<td>54.9</td>
<td>1.330</td>
<td>1.220</td>
<td>1.330</td>
<td>1.220</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2660.</td>
<td>146.</td>
<td>54.9</td>
<td>2.080</td>
<td>0.850</td>
<td>2.080</td>
<td>0.850</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1700.</td>
<td>93.</td>
<td>54.9</td>
<td>2.080</td>
<td>0.850</td>
<td>2.080</td>
<td>0.850</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1700.</td>
<td>93.</td>
<td>54.9</td>
<td>2.080</td>
<td>0.850</td>
<td>2.080</td>
<td>0.850</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>836.</td>
<td>46.</td>
<td>54.9</td>
<td>1.330</td>
<td>1.220</td>
<td>2.080</td>
<td>0.850</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>836.</td>
<td>46.</td>
<td>54.9</td>
<td>1.330</td>
<td>1.220</td>
<td>2.080</td>
<td>0.850</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>836.</td>
<td>46.</td>
<td>54.9</td>
<td>2.080</td>
<td>0.850</td>
<td>1.330</td>
<td>1.220</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>836.</td>
<td>46.</td>
<td>54.9</td>
<td>2.080</td>
<td>0.850</td>
<td>1.330</td>
<td>1.220</td>
</tr>
</tbody>
</table>

Total: 0.0 12065.2 662.5 Section 14 As/A.gross = 0.60 %

<table>
<thead>
<tr>
<th>No</th>
<th>R</th>
<th>M</th>
<th>(cm²)</th>
<th>(cm²)</th>
<th>(cm²/m)</th>
<th>y1</th>
<th>z1</th>
<th>y2</th>
<th>z2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2740.</td>
<td>145.</td>
<td>52.7</td>
<td>1.370</td>
<td>1.260</td>
<td>1.370</td>
<td>1.260</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2740.</td>
<td>145.</td>
<td>52.7</td>
<td>2.120</td>
<td>0.920</td>
<td>2.120</td>
<td>0.920</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1760.</td>
<td>93.</td>
<td>52.7</td>
<td>2.120</td>
<td>0.920</td>
<td>2.120</td>
<td>0.920</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1760.</td>
<td>93.</td>
<td>52.7</td>
<td>2.120</td>
<td>0.920</td>
<td>2.120</td>
<td>0.920</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>841.</td>
<td>44.</td>
<td>52.7</td>
<td>1.370</td>
<td>1.260</td>
<td>2.120</td>
<td>0.920</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>841.</td>
<td>44.</td>
<td>52.7</td>
<td>1.370</td>
<td>1.260</td>
<td>2.120</td>
<td>0.920</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>841.</td>
<td>44.</td>
<td>52.7</td>
<td>2.120</td>
<td>0.920</td>
<td>1.370</td>
<td>1.260</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>841.</td>
<td>44.</td>
<td>52.7</td>
<td>2.120</td>
<td>0.920</td>
<td>1.370</td>
<td>1.260</td>
</tr>
</tbody>
</table>

Total: 0.0 12363.1 652.1 Section 15 As/A.gross = 0.56 %

<table>
<thead>
<tr>
<th>No</th>
<th>R</th>
<th>M</th>
<th>(cm²)</th>
<th>(cm²)</th>
<th>(cm²/m)</th>
<th>y1</th>
<th>z1</th>
<th>y2</th>
<th>z2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2840.</td>
<td>130.</td>
<td>45.1</td>
<td>1.460</td>
<td>1.340</td>
<td>1.460</td>
<td>1.340</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2840.</td>
<td>130.</td>
<td>45.1</td>
<td>2.210</td>
<td>0.960</td>
<td>2.210</td>
<td>0.960</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1920.</td>
<td>87.</td>
<td>45.1</td>
<td>2.210</td>
<td>0.960</td>
<td>2.210</td>
<td>0.960</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1920.</td>
<td>87.</td>
<td>45.1</td>
<td>2.210</td>
<td>0.960</td>
<td>2.210</td>
<td>0.960</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>841.</td>
<td>38.</td>
<td>45.1</td>
<td>1.460</td>
<td>1.340</td>
<td>2.210</td>
<td>0.960</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>841.</td>
<td>38.</td>
<td>45.1</td>
<td>1.460</td>
<td>1.340</td>
<td>2.210</td>
<td>0.960</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>841.</td>
<td>38.</td>
<td>45.1</td>
<td>2.210</td>
<td>0.960</td>
<td>1.460</td>
<td>1.340</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>841.</td>
<td>38.</td>
<td>45.1</td>
<td>2.210</td>
<td>0.960</td>
<td>1.460</td>
<td>1.340</td>
</tr>
</tbody>
</table>

Total: 0.0 13043.1 588.2 Section 17 As/A.gross = 0.45 %
Building member: Polygonaler Pfeiler - Höhe 41.05 m

<table>
<thead>
<tr>
<th>No</th>
<th>R</th>
<th>M</th>
<th>min.As (cm²)</th>
<th>max.As (cm²)</th>
<th>R</th>
<th>M</th>
<th>required.As (cm²)</th>
<th>Coordinates (m)</th>
<th>y1</th>
<th>z1</th>
<th>y2</th>
<th>z2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.3020</td>
<td>1.26</td>
<td>126</td>
<td>41.9</td>
<td>-1.510</td>
<td>1.510</td>
<td>-1.370</td>
<td>1.510</td>
<td>-1.370</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0.3020</td>
<td>1.26</td>
<td>126</td>
<td>41.9</td>
<td>-1.510</td>
<td>1.510</td>
<td>-1.370</td>
<td>1.510</td>
<td>-1.370</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0.1980</td>
<td>3.63</td>
<td>83</td>
<td>41.9</td>
<td>-2.260</td>
<td>0.990</td>
<td>-2.260</td>
<td>-0.990</td>
<td>-2.260</td>
<td>-0.990</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0.1980</td>
<td>3.63</td>
<td>83</td>
<td>41.9</td>
<td>2.260</td>
<td>0.990</td>
<td>2.260</td>
<td>0.990</td>
<td>2.260</td>
<td>0.990</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0.855</td>
<td>36.8</td>
<td>36</td>
<td>41.9</td>
<td>-2.260</td>
<td>-0.960</td>
<td>-1.510</td>
<td>-1.370</td>
<td>1.510</td>
<td>-1.370</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>0.841</td>
<td>35.5</td>
<td>35</td>
<td>41.9</td>
<td>1.510</td>
<td>1.370</td>
<td>2.260</td>
<td>0.990</td>
<td>2.260</td>
<td>0.990</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>0.841</td>
<td>35.5</td>
<td>35</td>
<td>41.9</td>
<td>-2.260</td>
<td>0.990</td>
<td>-1.510</td>
<td>-1.370</td>
<td>1.510</td>
<td>-1.370</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>0.841</td>
<td>35.5</td>
<td>35</td>
<td>41.9</td>
<td>2.260</td>
<td>0.990</td>
<td>1.510</td>
<td>1.370</td>
<td>1.510</td>
<td>1.370</td>
</tr>
</tbody>
</table>

Total: 0.0 13377.1 559.9 Section 18 As/A_gross = 0.42%

<table>
<thead>
<tr>
<th>As (cm²)</th>
<th>As/A_gross</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 13843.1 510.0 Section 19</td>
<td>0.36%</td>
</tr>
</tbody>
</table>

Height to(m) Lateral Section d1(m) As(cm²) As/A_gross

<table>
<thead>
<tr>
<th>Height to(m)</th>
<th>Lateral Section</th>
<th>d1(m)</th>
<th>As(cm²)</th>
<th>As/A_gross</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.05</td>
<td>1</td>
<td>0.060</td>
<td>185.1</td>
<td>0.16%</td>
</tr>
<tr>
<td>39.45</td>
<td>2</td>
<td>0.060</td>
<td>121.8</td>
<td>0.16%</td>
</tr>
<tr>
<td>39.45</td>
<td>3</td>
<td>0.060</td>
<td>210.5</td>
<td>0.16%</td>
</tr>
<tr>
<td>36.05</td>
<td>4</td>
<td>0.090</td>
<td>158.2</td>
<td>0.17%</td>
</tr>
<tr>
<td>33.75</td>
<td>5</td>
<td>0.090</td>
<td>116.2</td>
<td>0.17%</td>
</tr>
<tr>
<td>31.45</td>
<td>6</td>
<td>0.120</td>
<td>121.8</td>
<td>0.17%</td>
</tr>
<tr>
<td>29.15</td>
<td>7</td>
<td>0.120</td>
<td>164.8</td>
<td>0.20%</td>
</tr>
<tr>
<td>26.85</td>
<td>8</td>
<td>0.120</td>
<td>443.1</td>
<td>0.55%</td>
</tr>
<tr>
<td>24.55</td>
<td>9</td>
<td>0.120</td>
<td>538.2</td>
<td>0.63%</td>
</tr>
<tr>
<td>22.25</td>
<td>10</td>
<td>0.120</td>
<td>569.5</td>
<td>0.63%</td>
</tr>
<tr>
<td>19.95</td>
<td>11</td>
<td>0.120</td>
<td>614.0</td>
<td>0.64%</td>
</tr>
<tr>
<td>17.65</td>
<td>12</td>
<td>0.120</td>
<td>641.0</td>
<td>0.64%</td>
</tr>
<tr>
<td>15.35</td>
<td>13</td>
<td>0.120</td>
<td>651.8</td>
<td>0.62%</td>
</tr>
<tr>
<td>13.05</td>
<td>14</td>
<td>0.120</td>
<td>662.5</td>
<td>0.60%</td>
</tr>
<tr>
<td>10.75</td>
<td>15</td>
<td>0.120</td>
<td>652.1</td>
<td>0.56%</td>
</tr>
<tr>
<td>8.45</td>
<td>16</td>
<td>0.120</td>
<td>629.3</td>
<td>0.51%</td>
</tr>
<tr>
<td>6.15</td>
<td>17</td>
<td>0.120</td>
<td>588.2</td>
<td>0.45%</td>
</tr>
<tr>
<td>3.85</td>
<td>18</td>
<td>0.120</td>
<td>559.9</td>
<td>0.42%</td>
</tr>
<tr>
<td>0.00</td>
<td>19</td>
<td>0.120</td>
<td>510.0</td>
<td>0.36%</td>
</tr>
</tbody>
</table>

Total long. reinforcement = 14475 kg (without anchorage length etc.)
Result graphics
RIB BEST 13.0 (c)2013 RIB Software AG

Longitudinal reinforcement [cm²]

max 653.80 min 187.50
LC2: 1.35(G+V) + 1.50(P+Z+0.8T+S)...
Normal force, 2nd order theory [kN]
max -28687.20 min -42268.60

LC2: 1.35(G+V) + 1.50(P+Z+0.8T+S)...
Bending moments 2nd order theory [kNm]
max -152.90 min -34119.20
Shear forces, 2nd order theory [kN]

max 51.60 min -497.90

Displacements 1.0-fold [mm]

max 35.51 min -6.92
LC2: 1.35(G+V) + 1.50(P+Z+0.8T+S)...

Displacements, 2nd order theory [mm]
max 513.65 min -62.15

LC2: 1.35(G+V) + 1.50(P+Z+0.8T+S)...

Initial displacements, 2nd order theory [mm]
max 331.11 min -40.04